
NoisePrint: Attack Detection Using Sensor and Process Noise
Fingerprint in Cyber Physical Systems

Chuadhry Mujeeb Ahmed
SUTD, Singapore

chuadhry@mymail.sutd.edu.sg

Martín Ochoa
SUTD, Singapore AND Universidad

del Rosario, Bogotá, Colombia

Jianying Zhou,
Aditya P. Mathur
SUTD, Singapore

jianying_zhou@sutd.edu.sg,aditya_
mathur@sutd.edu.sg

Rizwan Qadeer
SUTD, Singapore

rizwan_qadeer@sutd.edu.sg

Carlos Murguia
Melbourne University, Australia
carlos.murguia@unimelb.edu.au

Justin Ruths
UT Dallas, USA

jruths@utdallas.edu

ABSTRACT
An attack detection scheme is proposed to detect data integrity
attacks on sensors in Cyber-Physical Systems (CPSs). A combined
fingerprint for sensor and process noise is created during the nor-
mal operation of the system. Under sensor spoofing attack, noise
pattern deviates from the fingerprinted pattern enabling the pro-
posed scheme to detect attacks. To extract the noise (difference
between expected and observed value) a representative model of
the system is derived. A Kalman filter is used for the purpose of
state estimation. By subtracting the state estimates from the real
system states, a residual vector is obtained. It is shown that in steady
state the residual vector is a function of process and sensor noise.
A set of time domain and frequency domain features is extracted
from the residual vector. Feature set is provided to a machine learn-
ing algorithm to identify the sensor and process. Experiments are
performed on two testbeds, a real-world water treatment (SWaT) fa-
cility and a water distribution (WADI) testbed. A class of zero-alarm
attacks, designed for statistical detectors on SWaT are detected by
the proposed scheme. It is shown that a multitude of sensors can
be uniquely identified with accuracy higher than 90% based on the
noise fingerprint.

CCS CONCEPTS
• Security andprivacy→ Intrusion/anomaly detection; •Com-
puter systems organization → Sensors and actuators; Em-
bedded systems; Dependable and fault-tolerant systems and net-
works;
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1 INTRODUCTION
A Cyber Physical System (CPS) is a combination of computing
elements and physical phenomenon [8, 39]. In particular we will
consider examples of water treatment and distribution plants in
this paper, also known as Industrial Control Systems (ICS) [29].
An ICS consists of cyber components such as Programmable Logic
Controllers (PLCs), sensors, actuators, Supervisory Control and
Data Acquisition (SCADA) workstation, and Human Machine Inter-
face (HMI) elements interconnected via a communications network.
The PLCs control a physical process based on the sensor data via a
SCADA workstation. The advances in communication technologies
resulted in widespread of such system to better monitor and operate
ICS, but this connectivity also exposes physical processes to mali-
cious entities on the cyber domain. Recent incidents of sabotage
on these systems [13, 20, 48], have raised concerns on the security
of CPS [12].

Challenges in CPS security are different as compared with con-
ventional IT systems, especially in terms of consequences in case
of a security lapse. Attacks on CPS might result in damage to the
physical property, as a result of an explosion [16, 56] or severely
affecting people who depend on a critical infrastructure as was the
case of recent power cutoff in Ukraine [13]. Data integrity is an
important security requirement for CPS [24] therefore, integrity of
sensor data should be ensured. Sensor data can either be spoofed in
cyber (digital) domain [52] or in physical (analog) domain [47, 49].
Sensors are a bridge between the physical and cyber domains in a
CPS. Traditionally, an intrusion detection system (IDS) monitors
a communication network or a computing host to detect attacks.
However, physical tampering with sensors or sensor spoofing in
physical/analog domain, may go undetected by the legacy IDS [47].

Data integrity attacks on sensor measurement and impact of
such attacks have been studied in theory, including false data in-
jection [34], replay attacks [33], and stealthy attacks [17]. These
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previous studies proposed attack detection methods based on sys-
tem model and statistical fault detectors [3, 5, 37, 38] and also point
out the limitations of such fault detectors against an adversarial
manipulation of the sensor data. In practice attacks on sensor mea-
surement can be launched by analog spoofing attacks [28, 47, 57]),
or by tampering with the communication channel between a sensor
and a controller by means of a classical Man-in-The-Middle (MiTM)
attack [52].

The proposed scheme serves as a device identification framework
and it can also detect a range of attacks on sensors. The proposed
attack detection framework improves on the limitations of model
based attack detection schemes. In general for a complex CPS there
can be many possible attack scenarios. However zero-alarm attack
is a worst case scenario for a model based attack detection method
employing a threshold based detector. A zero-alarm attack exposes
the limitations of threshold based statistical attack detection meth-
ods. To be fair while making comparison, we choose the same attack
vector namely zero-alarm attack. Another important thing is that
the input to NoisePrint and reference methods is the same, i.e. a
residual vector. We also executed bias attack as an example of an
attack which can be detected using CUSUM and Bad-Data detec-
tors. The proposed scheme is a non-intrusive sensor and process
fingerprinting method to authenticate sensors transmitting mea-
surements to one or more PLCs. To apply this method we need to
extract noise pattern, for which system model of an ICS is used.
This scheme intelligently uses model of the system in a novel way
to extract noise pattern and then input that noise to NoisePrint as
shown in Figure 1. The input to NoisePrint block is a function of
sensor and process noise. Sensor noise is due to construction of
the sensor and process noise due to variations in the process e.g.
fluid sloshing in a storage tank in a process plant. Sensor noise is
different from one sensor to another because of hardware imper-
fections during the manufacturing process [19]. Process noise is
unique among different processes essentially because of different
process dynamics. Sensor and process noise can be captured using
a real system state (from sensor measurements) and system state
estimate (from system model). These noise variations affect each
device and process differently and thus are hard to control or re-
produce [23] making physical or digital spoofing of sensor noise
profiles challenging.

A technique, referred to as NoisePrint, is designed to fingerprint
sensor and process found in ICS. NoisePrint creates a noise finger-
print based on a set of time domain and frequency domain features
that are extracted from the sensor and process noise. To extract
noise pattern a system model based method is used. A two-class
Support Vector Machine (SVM) is used to identify each sensor from
a dataset, comprising of a multitude of industrial sensors. According
to the ground truth one class is labeled as legitimate sensor/process
and other class of illegitimate data (including attacks and data from
rest of the sensors in the plant). Experiments are performed on two
operational water treatment and distribution facilities accessible
for research [6, 31]. A class of attacks as explained in threat model
are launched on a real water treatment testbed and results are
compared with reference statistical methods. Sensor identification
accuracy is observed to be as high as 96%, and at least 90% for a
range of sensors.

The major contributions of this work are thus:

• Anovel fingerprinting framework that is based on sensor and
process noise, and is a function of hardware characteristics
of a device and Physics of the process.

• A detailed evaluation of the proposed NoisePrint as attack
detection method, for a class of sensor spoofing attacks.

• Extensive empirical performance evaluation on realistic testbeds.
• A comparison of the performance of the proposed scheme
with the reference statistical detectors.

• A detailed evaluation of the proposed NoisePrint as a device
identification method in a complex CPS.

This work evaluates NoisePrint in the context of water treatment
and water distribution testbeds [6, 31]. Commonly found industrial
sensors are studied, but without loss of generality, the analysis is
applicable to other industrial applications.

2 SYSTEM DESCRIPTION AND ATTACK
DETECTION

In this section we will explain the overview of the proposed scheme.
Figure 1 shows the block diagram of the proposed scheme.

2.1 System Dynamics
In Figure 1, the first block represents data collection step from
the real water testbeds. A linear time invariant system model is
obtained using either first principles (laws of Physics) or subspace
system identification techniques. Then, we construct a Kalman filter
which is used to obtain estimates for the system states and to find
the residual vector. We studied the system design and functionality
of the water treatment (SWaT) testbed [31] to obtain the system
model. For the water distribution (WADI) testbed, we used data
collected under regular operation (no attacks) and subspace system
identification techniques [40] to obtain a system model. For both
testbeds, resulting system models are Linear Time Invariant (LTI)
discrete time state space model of the form:{

xk+1 = Axk + Buk +vk ,

yk = Cxk + ηk .
(1)

At the time-instants k ∈ N, the output of the process yk is sam-
pled and transmitted over a communication channel as shown in Fig-
ure 2. The control action uk is computed based on the received sen-
sor measurement ȳk . Data is exchanged between different entities
of this control loop and it is transmitted via communication chan-
nels. There are many potential points where an attacker can hack
into the system. For instance,Man-in-The-Middle (MiTM) attacks at
the communication channels and physical attacks directly on the
infrastructure. In this paper, we focus on sensor spoofing attacks,
which could be accomplished through aMan-in-The-Middle (MiTM)
scheme [52] or a replacement of on board PLC software [15, 22, 25].
After each transmission and reception, the attacked output ȳk takes
the form:

ȳk := yk + δk = Cxk + ηk + δk , (2)
where δk ∈ Rm denotes sensor attacks. Throughout this paper,
we reserve the variable k as the discrete-time index of various
sequences; where clear, we omit reminding the reader that k ∈ N.

2
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Figure 1: Block diagram explaining an overview of the proposed attack detection scheme.

2.2 Kalman Filter
We used Kalman filter to estimate the state of the system based on
the available output yk ,

x̂k+1 = Ax̂k + Buk + Lk
(
ȳk −Cx̂k

)
, (3)

with estimated state x̂k ∈ Rn , x̂1 = E[x(t1)], where E[ · ] denotes
expectation, and gain matrix Lk ∈ Rn×m . Define the estimation
error ek := xk − x̂k . In the Kalman filter, the matrix Lk is designed
to minimize the covariance matrix Pk := E[ekeTk ] (in the absence of
attacks). Given the system model (1),(2) and the estimator (3), the
estimation error is governed by the following difference equation

ek+1 =
(
A − LkC

)
ek − Lkηk − Lkδk +vk . (4)

If the pair (A,C) is detectable, the covariance matrix converges
to steady state in the sense that limk→∞ Pk = P exists [10]. We
assume that the system has reached steady state before an attack
occurs. Then, the estimation of the random sequence xk ,k ∈ N can
be obtained by the estimator (3) with Pk and Lk in steady state. It
can be verified that, if R2 +CPCT is positive definite, the following
estimator gain

Lk = L :=
(
APCT

) (
R2 +CPC

T )−1
, (5)

leads to the minimal steady state covariance matrix P , with P given
by the solution of the algebraic Riccati equation:

APAT − P + R1 = APCT (R2 +CPC
T )−1CPAT . (6)

The reconstruction method given by (3)-(6) is referred to as the
steady state Kalman Filter, cf. [10].

2.3 Attack Detection Framework
In this section, we explain the details of the proposed attack detec-
tion scheme. First, we discuss the Kalman filter based state estima-
tion and residual generation. Then, we present the design of our
residual-based fingerprinting method (namely NoisePrint).

Figure 2: A general CPS under sensor attacks.

2.3.1 Residual and Noise Fingerprint. Proposition 1. In steady
state [10], residual vector is a function of sensor and process noise.
Consider the process (1), the Kalman filter (3)-(6). The residual vec-

tor is given as, rk = Cek + ηk and ek =
k−2∑
i=0

(A − LC)i (vk−i−1 −

Lηk−i−1), where vk ∈ Rn is the process noise and ηk ∈ Rm is the
sensor noise.

Proof : Due to space limitations the proof is given in Appendix A.
This is an important intuition behind the idea of NoisePrint as
it can be seen that the residual vector obtained from the system
model, is a function of process and sensor noise. Using system
model and system state estimates it is possible to extract the sensor
and process noise. Once we have obtained these residual vectors
capturing sensor and process noise characteristics of the given ICS,
we can proceed with pattern recognition techniques (e.g. machine
learning) to fingerprint the given sensor and process.

2.3.2 Design of NoisePrint. Figure 3 shows the steps involved
in composing a sensor and process noise fingerprint. The proposed
scheme begins with data collection and then divides data into
smaller chunks to extract a set of time domain and frequency do-
main features. Features are combined and labeled with a sensor ID.
A machine learning algorithm is used for sensor classification.

3
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Table 1: List of features used. Vector x is time domain data
from the sensor forN elements in the data chunk. Vectory is
the frequency domain feature of sensor data.yf is the vector
of bin frequencies andym is the magnitude of the frequency
coefficients.

Feature Description
Mean x̄ = 1

N
∑N
i=1 xi

Std-Dev σ =
√

1
N−1

∑N
i=1(xi − x̄i )2

Mean Avg. Dev Dx̄ =
1
N

∑N
i=1 |xi − x̄ |

Skewness γ = 1
N

∑N
i=1(

xi−x̄
σ )3

Kurtosis β = 1
N

∑N
i=1(

xi−x̄
σ )4 − 3

Spec. Std-Dev σs =

√∑N
i=1(yf (i)2)∗ym (i)∑N

i=1 ym (i)

Spec. Centroid Cs =
∑N
i=1(yf (i))∗ym (i)∑N

i=1 ym (i)
DC Component ym (0)

Residual Collection: The next step after obtaining a systemmodel
for an ICS is to calculate the residual vector as explained in previ-
ous section. Residual is collected for different types of industrial
sensors present in SWaT and WADI testbeds.We collect residual
for the level sensors in SWaT testbed and a multitude of sensors in
WADI testbed. The objective of residual collection step is to extract
sensor and process noise by analyzing the residual vector. When
the plant is running, an error in sensor reading is a combination of
sensor noise and process noise (water sloshing etc.). The collected
residual is analyzed, in time and frequency domains, to examine
the noise patterns, which are found to follow Gaussian distribu-
tion. Sensors and processes are profiled using variance and other
statistical features in the noise vector. The experiment is run, to
obtain sensor and process profile, so that it can be used for later
testing. A machine learning algorithm is used to profile sensors
from fresh readings (test-data). Noise fingerprints can be generated
over time or at the commissioning phase of the plant. Since these
noise fingerprints are extracted from the system model, it does not
matter if the process is dynamic or static.
Feature Extraction: Data is collected from sensors at a sampling
rate of one second. Since data is collected over time, we can use
raw data to extract time domain features. We used the Fast Fourier
Transform (FFT) algorithm [55] to convert data to frequency domain
and extract the spectral features. In total, as in Table 1, eight features
are used to construct the fingerprint.
Data Chunking:After residual collection, the next step is to create
chunks of dataset. In following sections, it will be seen that we have
performed experiments on a dataset collected over 14 days inWADI
testbed. An important purpose of data chunking is to find out, how
much is the sample size to train a well-performing machine learning
model? and How much data is required to make a decision about
presence or absence of an attacker? The whole residual dataset (total
of N readings) is divided intom chunks (each chunk of

⌊ N
m
⌋
), we

calculate the feature set < F (Ci ) > for each data chunk i . For each
sensor, we havem sets of features < F (Ci ) >i ∈[1,m]. For n sensors

   Data

Collector

  Residual

Calculation

  Feature 

Extraction

   Sensor

Annotation

         ML

 Model Training

        ML

Model Testing
Sensor ID

Prediction

Best Model

Figure 3: NoisePrint Framework.

we can use n ×m sets of features to train the multi-class SVM. We
use supervised learning method for sensor identification which
has two phases– training and testing. For both phases, we create
chunks in a similar way as explained above.
Size of Training and Testing Dataset: It is found empirically
that 2-class SVM produced highest accuracy for the chunk size of⌊ N
m
⌋
= 120. For a total ofm feature sets for each sensor, at first we

used half (m2 ) for training and half (m2 ) for testing. To analyze the
accuracy of the classifier for smaller feature sets during training
phase, we began to reduce number of feature sets starting with
m
2 . Classification is then carried out for the following correspond-
ing range of feature sets for Training : {m2 ,

m
3 ,

m
4 ,

m
5 ,

m
10 }, and for

Testing : {m2 ,
2m
3 ,

3m
4 ,

4m
5 ,

9m
10 }, respectively. In section 5, empiri-

cal results are presented for such feature sets and the one with best
performance is chosen, for further analysis of the proposed scheme.
For the classifier we have used a multi-class SVM library [14], as
briefly described in Appendix C.

3 ATTACKER AND ATTACK MODEL
In this work, we consider specific cyber and physical attacks on
sensor measurements in an ICS, as shown in Figure 2. First, we lay
down our assumptions about the attacker, followed by justification
for such assumptions. In this section, we introduce the types of
attacks launched on our secure water treatment testbed (SWaT). Es-
sentially, the attacker model encompasses the attacker’s intentions
and its capabilities. The attacker may choose its goals from a set of
intentions [50], including performance degradation, disturbing a
physical property of the system, or damaging a component. In our
experiments, three classes of attacks from literature [5, 11, 34, 37]
are designed and executed.

3.1 Attacker Model
Assumptions on Attacker: It is assumed that the attacker has
access toyk,i = Cixk +ηk,i (i.e., the opponent has access to ith sen-
sor measurements). Also, the attacker knows the system dynamics,
the state space matrices, the control inputs and outputs, and the
implemented detection procedure. An attacker can not arbitrarily
change sensor measurements by learning and adding the sensor
and process noise to a modified sensor value. We do not consider
replay attack in this article because noise profile for process and
sensor is preserved during a replay attack.

4
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We consider a strong adversary who is able to launch cyber and
physical attacks. In an ICS, sensors, actuators, and PLCs commu-
nicate with each other via communication networks. An attacker
can compromise these communication links in a classic Man-in-
The-Middle (MiTM) attack [2, 9, 52], for example, by breaking into
the link between sensors and PLCs. Besides false data injection in
sensor readings via cyber domain, an adversary can also physically
tamper a sensor, to drive a CPS into an unstable state. Therefore,
we need to authenticate sensor measurements, which are transmit-
ted to a controller. A malicious insider is an attacker with physical
access to the plant and thus to its devices such as level sensors.
However, an attacker who can physically replace or tamper sensors
may not necessarily be an insider, because critical infrastructures,
e.g., for water and power, are generally distributed across large ar-
eas [21, 51]. An outsider, e.g., end user, can also carry out a physical
attack on sensors such as smart energy monitors.

3.2 Attack Scenarios
Data Injection Attacks: For data injection attacks, it is considered
that an attacker injects or modifies the real sensor measurement.
In general for a complex CPS there can be many possible attack
scenarios. We consider a simple bias attack to show a comparison
between reference and proposed methods. However zero-alarm
attack is a worst case scenario for a model based attack detection
methods employing a threshold based detector and exposes the
limits of such detectors while NoisePrint can detect those attacks.
In our experiments, we consider the following two types of data
injection attacks:

• Bias Injection Attack: First, a failure-like attack is designed.
The attacker’s goal is to deceive the control system by send-
ing incorrect sensor measurements. In this scenario, the level
sensor measurements are increased while the actual tank
level is invariant. This makes the controller think that the
attacked values are true sensor readings, and hence, the wa-
ter pump keeps working until the tank is empty and cause
the pump to burn out. The attack vector can be defined as,

ȳk = yk + δk , (7)
where δk is the bias injected by the attacker.

• Zero-Alarm Attack for Statistical Detectors: This attack is de-
signed so as not to be detected by statistical detectors e.g.
Bad-Data or CUmmulative SUM (CUSUM) change detectors.
We implemented these two detectors in SWaT testbed to
compare the performance of the proposed NoisePrint with
these reference schemes. An attack is detected by analyzing
the statistics of the residual vector based on certain thresh-
olds. Design of such attacks is presented in section 5, after
giving a brief description of these statistical detectors and
how it works. Essentially an attacker chooses attack vector
δk in (7) in a way that it stays stealthy against statistical
detectors. In literature [5, 37] impact of such attacks has
already been studied. We call these attacks as zero-alarm as
the statistical detectors will not raise any alarms even the
system was under attack, enabling the attacker to conceal
its data injection while still impacting the system.

Figure 4: Experimentation setup in SWaT testbed. LIT rep-
resents a level sensor in tank T, along with flow meters FIT
and pump P.

3.3 Attack Execution
Cyber Domain: Data traffic from sensors to PLCs is intercepted
in a Man-in-The-Middle (MiTM) manner and packets are inspected
to change the payload (sensor measurement). Depending on the
attacker’s strategy, a false reading is injected to either execute a
bias injection attack or a zero-alarm attack.
Physical Domain: Sensor measurements can be spoofed in phys-
ical domain by bringing a malicious device near the sensing en-
vironment [47]. Hence both bias injection attack and zero-alarm
attack can be executed in the physical domain. An attacker with the
physical access to the plant can physically tamper with the sensors.
It is demonstrated in the evaluation section that the sensor noise is
a function of hardware characteristics of the device and possesses
a unique fingerprint. Therefore, any physical tampering will result
in the deviation from the reference noise pattern.

4 EXPERIMENTATION SETUP
The experiments are carried out in a state-of-the-art water treat-
ment and distribution facility [6, 31]. The proposed method is tested
on these two testbeds to demonstrate its viability on different cyber
physical systems. To further diversify the study, system model for
a portion of SWaT testbed is obtained using laws of Physics and
system model for WADI is produced using sub-space system identi-
fication technique [40]. We executed attacks on the water storage
tanks (via level sensors therein) in two different stages of SWaT
testbed. For sensor identification based on the system model, we
collected data from WADI testbed and used the proposed method
to identify a sensor against adversarial physical manipulations of a
sensor. we give a detailed explanation of both testbeds in Appen-
dix D, for an interested reader.

4.1 SWaT Two-Tank System Model
We performed sensor spoofing attacks on two different processes
(water tanks), as aMan-in-The-Middle (MiTM)manner [52] in SWaT
testbed [31]. In Figure 4 an illustration of the two stages used in
experiment are shown.

The intuition behind this step in the proposed scheme, is that
if a system model is carefully designed by considering physical
principles and system dynamics, we can calculate residual vector
for NoisePrint. It could detect the fault or raise an alarm if there is
an anomaly in noise dynamics of the system. A joint model for both
tanks is derived [44] to demonstrate a system wide scalability of

5
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the proposed scheme. The rate of change for water level in a tank
is equal to the difference between water flowing in and flowing
out over time. Inflow and outflow rates are controlled by actuator
actions. We can represent this flow of fluid using mass-balance
equation such as,

dV

dt
= Qin −Qout

dh

dt
=

Qin −Qout
A

since V = A × h, (8)
where V represents the volume of the tank, A is the cross-sectional
area of the tank, and h is the height of the water inside the tank,
(8) provides a linear equation, the term [Qin −Qout ] is the water
flow which depends upon the PLC control actions. Let us consider
water level in the tank as state of the system. Discretization leaves
us with the following system of state space difference equations,{

xk+1 = xk + uk +vk ,

yk = xk + ηk ,
(9)

where uk is the PLC control action and yk is the sensor measure-
ment driven by noise ηk . Since we have the system model now,
we can use Kalman filter to estimate the state of the system. We
designed the estimator so that it predicts the states of the two-tanks
simultaneously. The Kalman filter can be expressed as follows,

x̂k+1 = Fx̂k +Guk + L(ȳk − x̂k ), (10)
where x̂k is the estimate of the system state and ȳk is the last (pos-
sibly attacked) sensor measurement. L is the Kalman gain matrix
which is a weighting factor for the computation of the Kalman esti-
mate. The value of the Kalman gain could be between 0 and 1 [10]
which makes the estimation to either give more weight to current
measurement of the sensor or to the previous estimate of the sate.
Since we have a combined system model, a combined estimator is
derived which is a matrix of a 2 × 2 such that,

L =

(
L1 L2
L3 L4

)
, F =

(
1 0
0 1

)
, G =

(
1 1 0
0 1 1

)
.

For two-tank experiment we have vectored values now, so

x̂k =

(
x̂1
k

x̂2
k

)
, ȳk =

(
ȳ1
k

ȳ2
k

)
.

where x̂1
k , x̂

2
k , ȳ

1
k , ȳ

2
k are the previous estimate and last measure-

ments of Tank-1 and Tank-2 respectively. By putting all these values
in (10), we get combined Kalman estimation equations for Tank-1
and Tank-2.{

x̂1
k+1 = x̂1

k + u
1
k + L1(ȳ1

k − x̂1
k ) + L2(ȳ2

k − x̂2
k )

x̂2
k+1 = x̂2

k + u
2
k + L3(ȳ1

k − x̂1
k ) + L4(ȳ2

k − x̂2
k )

(11)

In (11), x̂1
k+1 represents the state estimation of Tank-1 and x̂2

k+1
represents the state estimation of Tank-2 in a combinedmanner. The
gain values were computed as of L1 = 0.35, L2 = 0.15, L3 = −0.15,
L4 = 0.65. This system model is implemented in real-time at SWaT
testbed [31], attack executed and results obtained are discussed in
the following sections.

4.2 WADI System Model
Figure 8 in appendix E shows a system level abstraction of the
water distribution testbed [6]. It has three major stages: Primary
Grid, Secondary Grid and Return Water. Each stage consists of
set of sensors and actuators. We consider sensor measurements as
outputs and actuation control actions as inputs. There are multitude
of sensors, actuating devices and six consumers nodes in WADI,
which makes it a complex system to obtain a system model from
first principles. To derive a system model, the plant is run for 14
days and data is collected for inputs and outputs. Using sub-space
system identification [40] techniques, a model of the following form
is obtained.

xk+1 = Axk + Buk +vk (12)
yk = Cxk + ηk (13)

where k ∈ N is the discrete time index, xk ∈ Rn is the state of
the approximated model, (its dimension depends on the order of
the approximated model), y ∈ Rm are the measured outputs, and
u ∈ Rp denotes the actuator action which depends on the demand
patterns. The system identification problem is to determine the sys-
tem matrices A,B,C from input-output data. The obtained model
provides a good fit (as shown in next section) between measure-
ments and modeled outputs (generated using the identified system
model) with 10 states, i.e., n = 10. We also identified a few higher
and lower order models. Ultimately, the model with 10 states has a
nice trade-off between prediction error and the dimensions of the
model.

4.3 System Model Validation
The identified model is validated by looking at the system state
evolution based on the identified state space matrices and initial
state x1. The closeness of the system evolution to the sensor mea-
surements obtained from real testbed indicates that this model is a
faithful representation of the water distribution network, as shown
in Figure 5. The top pane shows the sensor readings from real-
testbed as well as the modeled output for the electromagnetic flow
meter using system matrices. We can observe that modeled output
is very close to sensor readings, resulting in small error. (Error is
shown in the middle pane, while error’s probability distribution
is shown in the bottom pane.) In Figure 11 shown in appendix D,
we can see that real sensor measurement and sensor estimate for
Tank-1 in SWaT is the same, thus validating the model and ensuring
that it is representative of the real testbed. The middle pane shows
the difference between real sensor measurement and the sensor
estimate. The bottom pane shows the plot of PDF for the residual
vector, and for the level sensor in the SWaT testbed.

Besides visual representation of the model, we also analyzed
the statistical metric for the obtained model. Variance Account For
(VAF) values [54] are used on a data set from the real testbeds. VAF
is defined as,

VAF =max{1 − (var (yk − ŷk ))/var (yk ), 0} ∗ 100, (14)
where ŷk denotes the estimated output signal, yk sensor measure-
ments, and var the variance of a signal. The VAF values are shown
in appendix D Table 6 for SWaT testbed and in Table 2 for WADI
testbed. We can see that for SWaT both level sensor’s VAF values
are 100%, because (y − ŷ) value is very small, i.e. for level sensor on
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Table 2: Validating WADI system model obtained from sub-
space system identification.

Sensor (Output Channel) VAF value
RADAR Level Sensor (Primary Grid) 99.82%
RADAR Level Sensor (Secondary Grid) 99.94%
RADAR Level Sensor (Secondary Grid) 99.92%

Differential Pressure Transmitter (Secondary Grid) 96.86%
Differential Pressure Transmitter (Secondary Grid) 92.56%

Electromagnetic Flowmeter (Primary Grid) 99.74%
Electromagnetic Flowmeter (Secondary Grid) 99.54%
Electromagnetic Flowmeter (Secondary Grid) 98.70%
Electromagnetic Flowmeter (Secondary Grid) 97.10%

Tank-1 it is 1.87∗10−7 and for level sensor on Tank-2 it is 1.85∗10−7.
For WADI VAF value for each output channel is as high as 99%,
with a lowest of 92%. In literature a system model with a VAF value
of 80% is considered a good fit model [54].
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Figure 5: WADI System Model Validation.

5 PERFORMANCE EVALUATION
In this section a brief background on statistical detectors is given,
followed by attack design against such detectors and evaluation of
the proposed scheme.

5.1 Statistical Detectors: A Primer
Residuals and Hypothesis Testing: For the case of statistical de-
tectors, estimated state values are compared with sensor measure-
ments ȳk (which may have been attacked). The difference between
the two should stay within a certain threshold under normal oper-
ation, otherwise an alarm is triggered to point a potential attack.
Define the residual random sequence rk ,k ∈ N as,

rk := ȳk −Cx̂k = Cek + ηk + δk . (15)
If there are no attacks, the mean of the residual is,

E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1. (16)

where 0m×1 denotes anm × 1 matrix composed of only zeros, and
the covariance is given by,

Σ := E[rk+1r
T
k+1] = CPC

T + R2. (17)
For this residual, we identify two hypotheses to be tested, H0 the
normal mode (no attacks) and H1 the faulty mode (with attacks).
We can formulate the hypothesis testing in a more formal manner
using existing change detection techniques (as explained in the
following) based on the statistics of the residuals.
Cumulative Sum (CUSUM) Detector: The CUSUM procedure is
driven by the residual sequences. In particular, the input to the
CUSUM procedure is a distance measure, i.e., a measure of how
deviated the estimator is from the actual system, and this measure
is a function of the residuals. We propose the absolute value of the
entries of the residual sequence as distance measure, i.e.,

zk,i := |rk,i | = |Ciek + ηk,i + δk,i |. (18)
For a given distance measure zk,i ∈ R, the CUSUM of Page [41] is
written as follows.

CUSUM: S0,i = 0, i ∈ I,{
Sk,i = max(0, Sk−1,i + zk,i − bi ), if Sk−1,i ≤ τi ,

Sk,i = 0 and k̃i = k − 1, if Sk−1,i > τi .
(19)

Design parameters: bias bi > 0 and threshold τi > 0.
Output: alarm time(s) k̃i .

Bad-Data Detector: For the residual sequence rk,i given by (15),
the Bad-Data detector is defined as follows.

Bad-Data Procedure:

If |rk,i | > αi , k̃i = k, i ∈ I. (20)
Design parameter: threshold αi > 0.
Output: alarm time(s) k̃i .

Using the Bad-Data detector an alarm is triggered if distance mea-
sure |rk,i | exceeds the threshold αi . In Appendix B, more details on
these statistical detectors are given for an interested reader.

5.2 Zero-Alarm Attack Design
We executed the two types of zero-alarm attacks on SWaT testbed
against the introduced statistical detectors.
Zero-Alarm Attack for Bad-Data Detector: This attack is de-
signed to stay undetected by the Bad-Data detectors. The attacker
knows the system dynamics, has access to sensor readings, and
knows the detector parameters, it is able to inject false data into real-
time measurements and stay undetected. Consider the Bad-Data
procedure and write (20) in terms of the estimated state x̂k ,

|rk,i | = |yk,i −Ci x̂k + δk,i | ≤ αi , i ∈ I. (21)
By assumption, the attacker has access to yk,i = Cixk +ηk,i . More-
over, given its perfect knowledge of the observer, the opponent can

7

Session 12: Physical Attacks and Defense ASIACCS’18, June 4–8, 2018, Incheon, Republic of Korea

489



compute the estimated outputCi x̂k and then construct yk,i −Ci x̂k .
It follows that,
δk,i = Ci x̂k − yk,i + αi − ϵi , (αi > ϵi ) → |rk,i | = αi − ϵi , i ∈ I,

(22)
is a feasible attack sequence given the capabilities of the attacker.
The constant ϵi > 0 is a small positive constant introduced to ac-
count for numerical precision. These attacks maximize the damage
to the CPS by immediately saturating and maintaining |rk,i | at the
constant αi −ϵi . Therefore, for this attack, the sensor measurements
received by the controller take the form,

ȳk,i = Ci x̂k + αi − ϵi . (23)

Zero-Alarm Attack for CUSUM Detector: This attack is designed
to stay undetected by the CUSUM detectors. Consider the CUSUM
procedure and write (19) in terms of the estimated state x̂k ,

Sk,i = max(0, Sk−1,i + |yk,i −Ci x̂k + δk,i | − bi ), (24)
if Sk−1,i ≤ τi and Sk,i = 0 if Sk−1,i > τi . As with the Bad-Data
procedure, we look for attack sequences that immediately saturate
and then maintain the CUSUM statistic at Sk,i = τi − ϵi where ϵi
(min(τi ,bi ) > ϵi > 0) is a small positive constant introduced to
account for numerical precision. Assume that the attack starts at
some k = k∗ ≥ 1 and Sk∗−1,i ≤ τi , i.e., the attack does not start
immediately after a false alarm. Consider the attack,

δk,i =

{
τi − ϵi + bi − yk,i +Ci x̂k − Sk−1,i , k = k∗,

bi − yk,i +Ci x̂k , k > k∗.
(25)

This attack accomplishes Sk,i = τi − ϵi for all k ≥ k∗ (thus zero
alarms). Note that the attacker can only induce this sequence by
exactly knowing Sk∗−1,i , i.e., the value of the CUSUM sequence
one step before the attack. This is a strong assumption since it
represents a real-time quantity that is not communicated over the
communication network. Even if the opponent has access to the
parameters of the CUSUM, (bi ,τi ), given the stochastic nature of
the residuals, the attacker would need to know the complete history
of observations (from when the CUSUM was started) to be able to
reconstruct Sk∗−1,i from data. This is an inherent security advan-
tage in favor of the CUSUM over static detectors like the Bad-Data.
Nevertheless, for evaluating the worst case scenario, we assume
that the attacker has access to Sk∗−1,i . Therefore, for this attack,
the sensor measurements received by the controller take the form,

ȳk,i =

{
Ci x̂k + τi − ϵi + bi − Sk−1,i − ϵi , k = k∗,

Ci x̂k + bi , k > k∗.
(26)

5.3 Performance Metrics
In our experiments, each sensor is assigned a unique ID and a two-
class classification is applied to identify each sensor. To evaluate
the performance, we use identification accuracy as a performance
metric. Let c be the total number of classes. We define TPi as true
positive for class ci when it is rightly classified based on the ground
truth. False negative FNi is defined as the wrongly rejected, and
False positive FPi as wrongly accepted. True negative TNi is the
rightly rejected class. The overall accuracy (acc) for total of c classes
is defined as,

Figure 6: Residual vector for the Tank-1 during the normal
operation of the SWaT plant.

acc =

∑c
i=1TPi +

∑c
i=1TNi∑c

i=1TPi +
∑c
i=1TNi +

∑c
i=1 FPi +

∑c
i=1 FNi

. (27)

5.4 Attack Detection Performance
Attack detection performance of the proposed scheme is presented
and compared with the statistical detectors from the literature.
Residual Vector for Normal Operation: Figure 6 shows plot for
residual vector for the case of normal operation in SWaT testbed.
Residue vector is shown for three different states of the system,
i.e. region A is the case for water emptying process in Tank-1,
region B is the case for static process and region C for water filling
process. The randomness in the residue vector is a function of sensor
and process noise as given by proposition 1. The intuition for the
proposed scheme is based on this noise pattern in the residue vector.
Sensor noise part is due to physical structure of the sensor [19]
and process noise is property of the process e.g. water sloshing in
the tank [4]. The horizontal line is the threshold for the Bad-Data
detector.
ThresholdValidation for the Statistical Detectors:As explained
in previous section that the threshold has to be selected such that
it could satisfy the alarm rate, and it should not have too much
margin so that the false alarm rate is too high or is too low. Here
we tested our combined detector of both Bad-Data and CUSUM on
both tanks dynamically and the result is shown in Figure 9. The plot
shows that the alarm rate for tanks is between 0.02 to 0.04. Both
detectors running at Tank-1 converged to a 0.025 false alarm rate
when running for more than 1500 time stamps. Similarly detectors
running at Tank-2 converged to 0.045 false alarm rate. To achieve
this false alarm rate we used the threshold settings as shown in
Table 3.
Residual Vector for Zero-Alarm Attack: Figure 7 shows a plot
for the residual vector when system is under zero-alarm attack.
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Table 3: Threshold Validation for Statistical Detectors.

Parameter Tank-1 Tank-2
α 0.00046072 0.00045890
τ 0.00015972 0.00014750

bias b 0.0003269 0.0003256

The left most plot shows real-time data for level sensor in Tank-1,
while two plots on the right show residual vectors for Bad-Data and
CUSUMdetectors. From the design of zero-alarm attacks in previous
section, it was expected that the attacker would spoof the sensor
data to stay stealthy for the statistical detectors. In an attempt to be
stealthy but still be able to damage the plant [5, 17, 37], an attacker
would inevitably modify the noise pattern of the residual vector.
A visual comparison of normal operation in Figure 6 and system
under attack in Figure 7, reveals the deviation from the normal
noise pattern when system is under attack.
Attack Detection: Table 4 shows the results for the performance
of the attack detectors. A comparison between statistical detectors
and NoisePrint reveals that the proposed scheme is able to detect
sensor spoofing attacks using the same residual vector as used by
Bad-Data and CUSUM. Hence, NoisePrint removes the limitations
of these detectors and could detect the zero-alarm attacks.

• Constant Bias Attack: Figure 10 in appendix F shows the
water level at the Tank-1 when the system is under a constant
bias attack of δ1 = 0.01m. The PLC received this attacked
measurement value. The true value (plotted in gray) of the
level at Tank-1 is about 0.5m. This true level remains con-
stant throughout the attack and the inlet pump and valve
are switched OFF. The attack is launched at k = 11s (time
instant in plot) and the Bad-Data detector monitoring Tank-
1 detects it immediately. Furthermore this attack was also
detected by the CUSUM detector running at Tank-1.
NoisePrint also detects this attack using the SVM model
trained using residual from the normal operation of the plant.
The deviation in the residual vector from the normal opera-
tion is pictorially seen in Figure 10.

• Zero-Alarm Attack for Bad-Data and CUSUM Detec-
tor:We launched zero-alarm attack for Bad-Data andCUSUM
detectors for level sensor installed in two tanks at SWaT
testbed. Since this attack is designed to raise no alarms for
the Bad-Data or the CUSUM detectors, neither detector on
tanks detect the attack. The attacker has the complete knowl-
edge of the detectors, so he can deviate the level of the tank
in such a way that Bad-Data and CUSUM detectors would
not be able to detect it. Figure 7 shows the Tank-1 level sen-
sor under such an attack. It can be seen that attacker spoofs
sensor data in a way that residual vectors stay under the
detection threshold.
NoisePrint is able to detect zero-alarm attacks as noise pattern
is changed from the fingerprint created under the normal
operation.

Table 4: Attack detection performance and comparison be-
tween detectors.

Attack Type / Detector Bad-Data CUSUM NoisePrint
Detector Detector

Zero-Alarm Attack Not Detected Not Detected Detected (100% Accuracy)
Constant Bias Attack Detected Detected Detected (100% Accuracy)

5.5 Sensor Identification Accuracy
In Table 5, sensor identification accuracies are given for nine differ-
ent sensors in the water distribution testbed. We can see that the
lowest identification accuracy is 90% and the highest is 96.41%. The
sensors can be identified with a very high accuracy even though
few processes are of similar type e.g. flow of water, level of wa-
ter or pressure at the junctions. Two-class SVM is used for sensor
identification. One class is labeled as legitimate for the case of right
sensor and data from all other sensors, while attackers are labeled
as illegitimate. Since the residual vector (source of fingerprint) is a
function of sensor and process noise, if an adversary physically ma-
nipulates the sensor or execute analog sensor spoofing [47], it will
modify the sensor noise pattern. In case an adversary swaps level
sensors on two different tanks (processes) [4], the process noise
would deviate from the reference fingerprint. The proposed method
is able to detect such physical/analog domain manipulations. These
results highlight the significance of NoisePrint.

6 DISCUSSION
Security Argument: Attacks on sensor measurements can be de-
tected using NoisePrint for the case of an attacker with the knowl-
edge of either the system model including estimator gain or the
noise profile. However, for the case of a strong adversary (pos-
sessing knowledge of system model and noise distribution for a
sensor) the proposed scheme would fail only when an attacker
strictly follows the system model and imitates the noise profile. To
stay stealthy against NoisePrint an attacker should stay within the
bounds of noise distribution of a residual vector and can not deviate
from the system model, which means it can not inject arbitrary
values. An attacker injecting values from the noise distribution
of residual vector would not be able to achieve its objectives as
stated in the attacker model. NoisePrint raises the bar for such an
advanced attacker. For a more advanced attacker, we can comple-
ment NoisePrint with a challenge-response protocol, to detect replay
attacks. A challenge is generated from the physical quantity to be
measured and the challenger-sensor pair is fingerprinted, which
would help us detect replay attacks.
Scalability: In this article we considered a multitude of sensors
from two CPS testbeds. For evaluation of the proposed scheme
we have used two-class classification (LibSVM) by considering the
legitimate sensor (class 1) and rest of the sensors as illegitimate or
compromised (class 2). We also considered a variety of processes.
Multitude of devices, processes and the classification algorithm
indicates that NoisePrint is scalable. We studied the feasibility of
the proposed scheme on two different testbeds which also points
out the generality and scalability of the NoisePrint.
Attack Detection Speed: In this article we executed zero-alarm
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Figure 7: Zero-Alarm Attack for Bad-Data and CUSUM detectors on Tank-1 in SWaT. Horizontal line in right hand plots is the
threshold for the particular detector.

Table 5: WADI Sensor Identification Accuracy Result

Sensor Type and Model Identification Accuracy
RADAR Level Sensor (Primary Grid) iSOLV RD700 90.87%
RADAR Level Sensor (Secondary Grid) iSOLV EFS803/CFT183 96.41%
RADAR Level Sensor (Secondary Grid) iSOLV EFS803/CFT183 91.52%

Differential Pressure Transmitter (Secondary Grid) iSOLV SPT 200 92.02%
Differential Pressure Transmitter (Secondary Grid) iSOLV SPT 200 92.95%

Electromagnetic Flowmeter (Primary Grid) iSOLV EFS803/CFT183 92.76%
Electromagnetic Flowmeter (Secondary Grid) iSOLV EFS803/CFT183 90.76%
Electromagnetic Flowmeter (Secondary Grid) iSOLV EFS803/CFT183 90.0%
Electromagnetic Flowmeter (Secondary Grid) iSOLV EFS803/CFT183 92.04%

attacks on two stages of the SWaT testbed and compared the per-
formance of NoisePrint and legacy statistical methods based on
certain thresholds. The proposed scheme can detect these attacks
while legacy methods fail. However, there is a trade-off for such a
good performance, in terms of detection time. For threshold based
schemes an attack detection decision is made at each time instant,
by comparing the residual value to a threshold, while for NoisePrint
we need 120 samples to extract features and then make a detection
decision. There is a delay of 120 samples to raise an alarm if any
attack is being executed. However, we propose an idea where we
only wait for initial 120 readings and then at each time instant use
previous readings in a moving window manner plus a set of fresh
readings to extract a feature vector. This way, we do not have to
wait for 120 readings and an attack can be detected in less time. We
have not tested this proposal yet, which is part of our future work.
Application in Real-World CPS: We have tested the proposed
method for a data set collected over a period of two weeks from a
water distribution testbed. The results are promising for such a time
period. However, it is recommended to train the classifiers after
every plant maintenance cycle. Moreover, being used in a testbed for
few weeks is different from being used in a real-world production
system of physical plants with possibly more harsh environment

especially for the case of level measurements including rivers, dams
etc. Although the testbeds used in the reported experiments imitate
real water treatment plants as close as possible but we believe
the sensors and actuators wear out with time, rendering them less
accurate. There is a possibility that those environmental effects may
change the fingerprint but according to our hypothesis each sensor
will be affected in a distinct way and, if retrained, will possess a
unique fingerprint. As far as the ambient noise or interference is
concerned that would affect all the devices in a similar manner,
letting us to cancel out those effects from sensor fingerprint.
Implementation and Practical Considerations:
Sensor Replacement: Replacement of a sensor requires the gen-
eration of a new fingerprint for the new sensor. Currently we have
a system-wide model for a testbed which is an advantage of the
proposed method in that it is scalable for a complete realistic plant.
Hence, if we are retraining the model, we need to do so for the
entire system (plant). If only one sensor is replaced then we need
to collect fresh data for that sensor and update the system model.
Training: For training we need at least one complete cycle of a
process. For example, if we are modeling a water storage tank, then
the dynamics of emptying and filling a tank should be captured.Re-
sults: There are three main results in the paper: a). Constant Bias
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Attack Detection, b). Zero-Alarm Attack Detection and c). Device
Identification. We trained the SVM for two-class classification on a
labeled data set during normal operation using a legitimate sensor
(class 1) and all other sensors and scenarios as (class 2). For testing
phase, we run the plant while under attack (attacks are launched
multiple times and residual vector is collected). SVM is able to de-
tect the change in noise profile when sensors are under attack with
an 100% accuracy. Performance Comparison: Attacks studied in
this article emulate the system states. For example a zero-alarm
attack when executed tries to imitate the emptying or a filling
process but by adding a small δ value to the sensor measurement
which can not be detected by legacy statistical detectors consid-
ered in this work. While the real system state would be something
different but readings sent to SCADA system would imitate the
physical process (emptying or filling) during the attack execution.
CUSUM and Bad-Data detectors fail as the attacker knows their
parameters (e.g. threshold) but NoisePrint is successful because an
arbitrary spoofing of sensor reading leads to deviation from the
normal noise fingerprint. NoisePrint is comparable to these other
methods because input to all these detectors is the same, a residual
vector and all of these depend on an accurate system model.

7 RELATEDWORK
Device Fingerprinting: The approach presented in this article is
inspired by the idea of using sensor noise as a fingerprint for camera
identification [30]. In [30], images are taken by a camera and fil-
tered to obtain noise components and averaged for all images. This
resultant noise vector acts as a reference pattern for test images.
An image is tested against reference patterns for all cameras being
studied and matched with one having the highest correlation with
image’s noise vector. The idea of fingerprinting a device remotely
based on its hardware is presented in [27]. Small microscopic de-
viations in device’s clock [35, 42] are used as fingerprint for the
particular device. In [45] inter arrival time of packets is analyzed
to fingerprint devices on a small campus network. In [18], 50 RFID
smart cards from the same manufacturer and type are tested for fin-
gerprints. Performance analysis on Received Signal Strength (RSS)
based fingerprinting of wireless access point is presented in [43].
CPS Device Fingerprinting: In [21] authors focus on the idea of
device fingerprinting in ICS. One approach in [21] is based on tradi-
tional network traffic monitoring and observing message response
time, while the second approach is based on physical operation time
of a device. Analysis is carried out on 2 latching relays based on
their operation timings. This approach can not be applied to devices
studied in our work because there is no mechanical motion of the
components as was the case for electric relays in [21]. A preliminary
study, on the idea of sensor fingerprinting is presented as a short
paper in [4], using 2 sensors, based on correlation analysis with an
accuracy of 86%. Besides lower accuracy, another limitation of [4] is
that it requires a complete process cycle (ten’s of minutes) to make
a detection decision, which is slow considering the critical nature
of real time CPS. Another related work in CPS presented a study
on the idea of sensor fingerprinting in [36]. However, to the best of
our knowledge, this paper presents the first attempt for a rigorous
analysis on fingerprinting the combined process and sensor noise.
The new approach is also able to detect attacks where an adversary

swaps sensors among processes [4]. Sensor swap attack would not
be detected by using only sensor noise. Another limitation of [36]
is that, to extract sensor noise for certain sensors (e.g. level sen-
sors), one needs to wait for process to be static. However, process
is not static most of the time and thus introducing another source
of noise i.e. process noise. The proposed scheme takes residual
vector as an input which is also an input for the statistical detectors
(e.g. CUSUM and Bad-Data). NoisePrint removes the limitations of
these statistical detectors against a class of well studied zero-alarm
attacks [5, 17, 37]. To the best of our knowledge, no prior work
has applied sensor and process noise fingerprinting scheme to the
detection of sensor data integrity attacks on ICS.

8 CONCLUSIONS AND FUTUREWORK
Summary: An idea for fingerprinting the sensor and process noise
for the purpose of device identification and attack detection is
proposed. We need a representative model for the system under
consideration. Towards that end we had access to two real world
water treatment (SWaT) and distribution (WADI) testbeds. We used
first principles and obtained the system model for a part of SWaT
testbed, based on the physics of the system. For WADI testbed,
we obtained a system model by using a well known technique of
sub-space system identification. Once we have system model for
our system, we can design a Kalman filter for the purpose of state
estimation. By subtracting the state estimates from the real system
estimates, a residual vector is obtained in steady state that residual
vector is a function of process and sensor noise.
Conclusions: A novel method to fingerprint these sensor and process
noise is presented. Our results have shown that zero-alarm attacks
cannot be detected by reference statistical methods but can be
detected by the proposed scheme. Moreover, we have shown that
sensors can be uniquely identified with accuracy higher than 90%.
Future Work: In future, we plan to isolate the sensor noise from
the process noise to identify the individual sensors in the plant.
Another interesting problem is to increase the accuracy of device
identification. Towards that end we are working on generating and
using multiple system models by deploying a bank of observers for
each sensor and isolate the sensor under attack.
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A PROOF PROPOSITION 1.
For the process (1), the Kalman filter (3)-(6), we can represent
estimation error as, ek+1 = xk+1 − x̂k+1, which in turn gives,
ek+1 = A(xk − x̂k ) − Lηk +vk .

ek+1 = (A − LC)ek +vk − Lηk (28)
Considering estimation error as in (28), we start with estimator’s
initial state same as real system state, then e1 = 0. For second
iteration of estimation, from (28) we have e2 = (A−LC)e1+v1+Lη1,
for e1 = 0, it gives e2 = v1+Lη1. Similarly we get e3 = (A−LC)(v1−
Lη1)+v2−Lη2 and e4 = (A−LC)2(v1−Lη1)+(A−LC)(v2−Lη2)+(v3−
Lη3). By induction, we can generalize expression for k iterations of
an estimator and estimation error can be represented as,

ek =
k−2∑
i=0

(A − LC)i (vk−i−1 − Lηk−i−1) (29)

For residual we have rk = yk − ŷk , with ŷk = Cx̂k , it becomes
rk = C(xk − x̂k ) + ηk ,

rk = Cek + ηk (30)
By replacing ek in (30) we get an expression for residual in steady
state that is a function of process and sensor noise as given by
following expression,

rk = C

{k−2∑
i=0

(A − LC)i (vk−i−1 − Lηk−i−1)
}
+ ηk (31)

■

B STATISTICAL DETECTORS: A PRIMER
Residuals and Hypothesis Testing: In this work, we assess the
performance of two model-based fault detection procedures (the
Bad-Data and the CUSUM detectors) for a variety of attacks. These
procedures rely on a state estimator (e.g., Kalman filter) to predict
the evolution of the system. The estimated values are compared
with sensor measurements ȳk (which may have been attacked). The
difference between the two should stay within a certain threshold

under normal operation, otherwise an alarm is triggered to point a
potential attack. Define the residual random sequence rk ,k ∈ N as

rk := ȳk −Cx̂k = Cek + ηk + δk . (32)
If there are no attacks, the mean of the residual is

E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1. (33)
where 0m×1 denotes anm × 1 matrix composed of only zeros, and
the covariance is given by

Σ := E[rk+1r
T
k+1] = CPC

T + R2. (34)
For this residual, we identify two hypotheses to be tested, H0 the
normal mode (no attacks) and H1 the faulty mode (with attacks).
For our particular case of study, the pressure at the nodes and the
water level in the tank are the outputs of the system. Using this data
along with the state estimates, we construct our residuals. Then,
we have:

H0 :
{

E[rk ] = 0m×1,

E[rkrTk ] = Σ,
or H1 :

{
E[rk ] , 0m×1,

E[rkrTk ] , Σ.

We can formulate the hypothesis testing in a more formal manner
using existing change detection techniques (as explained in the
following) based on the statistics of the residuals.
Cumulative Sum (CUSUM) Detector: The CUSUM procedure is
driven by the residual sequences. In particular, the input to the
CUSUM procedure is a distance measure, i.e., a measure of how
deviated the estimator is from the actual system, and this measure
is a function of the residuals. In this work, we assume there is
a dedicated detector on each sensor (or on any sensor we want
to include in the detection scheme). Throughout the rest of this
paper we will reserve the index i to denote the sensor/detector,
i ∈ I := {1, 2, . . . ,m}. Thus, we can partition the attacked output
vector as ȳk = col(ȳk,1, . . . , ȳk,m ) where ȳk,i ∈ R denotes the i-th
entry of ȳk ∈ Rm ; then

ȳk,i = Cixk + ηk,i + δk,i , (35)
with Ci being the i-th row of C and ηk,i and δk,i denoting the i-th
entries of ηk and δk , respectively. Inspired by the empirical work
in [11], we propose the absolute value of the entries of the residual
sequence as distance measure, i.e.,

zk,i := |rk,i | = |Ciek + ηk,i + δk,i |. (36)

Note that, if there are no attacks, rk,i ∼ N(0,σ 2
i ), where σ

2
i denotes

the i-th entry of the diagonal of the covariance matrix Σ. Hence,
δk = 0 implies that |rk,i | follows a half-normal distribution [46]
with

E
[
|rk,i |

]
=

√
2

√
π
σi and var

[
|rk,i |

]
= σ 2

i

(
1 − 2

π

)
. (37)

Next, having presented the notion of distance measure, we intro-
duce the CUSUM procedure. For a given distance measure zk,i ∈ R,
the CUSUM of Page [41] is presented in (19).
From (19), it can be seen that Sk,i accumulates the distance measure
zk,i over time. The thresholds τi and bias bi are selected based on
a certain false alarm rate [1, 38, 53].
Bad-Data Detector:We have also implemented the Bad-Data de-
tector for this case study because it is widely used in the CPS
security literature [26, 32]. For the residual sequence rk,i given by
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(15), the Bad-Data detector is defined in (20). Using the Bad-Data
detector an alarm is triggered if distance measure |rk,i | exceeds the
threshold αi . Similar to the CUSUM procedure, the parameter αi
is selected to satisfy a required false alarm rate A∗

i . An interested
reader is referred to [37].

C SUPPORT VECTOR MACHINE CLASSIFIER
SVM is a data classification technique used in many areas such as
speech recognition, image recognition and so on [7]. The aim of
SVM is to produce a model based on the training data and give
classification results for testing data. For a training set of instance-
label pairs (xi ,yi ), i = 1, ...,k where xi ∈ Rn and y ∈ {1,−1}k ,
SVM require the solution of the following optimization problem:

minimize
w,b,ζ

1
2w

Tw +C
k∑
i=1

ζi

subject to yi (wTϕ(xi ) + b) ≥ 1 − ζi ,

where ζi ≥ 0.

(38)

The function ζ maps the training vectors into a higher dimen-
sional space. In this higher dimensional space a linear separating
hyperplane is found by SVM, whereC > 0 is the penalty parameter
of the error term. For the kernel function in this work we use the
radial basis function:

K(xi ,x j ) = exp(−γ | |xi − x j | |2),γ > 0. (39)
In our work, we have multiple sensors to classify. Therefore,

multi-class SVM library LIBSVM [14] is used.

D WATER TREATMENT TESTBED
It is a fully operational (research facility) scaled down water treat-
ment plant producing 5 gallons/minute of doubly filtered water, this
testbed mimics large modern plants for water treatment. Following
is the brief overview of the testbed, for further details, please refer
to [31].
Water Treatment Process: The treatment process consists of six
distinct stages each controlled by an independent Programmable
Logic Controller (PLC). Control actions are taken by the PLCs
using data from sensors. Stage P1 controls the inflow of water to
be treated by opening or closing a motorized valve MV-101. Water
from the raw water tank is pumped via a chemical dosing station
(stage P2, chlorination) to another UF (Ultra Filtration) feed water
tank in stage P3. A UF feed pump in P3 sends water via UF unit
to RO (Reverse Osmosis) feed water tank in stage P4. Here an RO
feed pump sends water through an ultraviolet dechlorination unit
controlled by a PLC in stage P4. This step is necessary to remove any
free chlorine from the water prior to passing it through the reverse
osmosis unit in stage P5. Sodium bisulphate (NaHSO3) can be added
in stage P4 to control the ORP (Oxidation Reduction Potential). In
stage P5, the dechlorinated water is passed through a 2-stage RO
filtration unit. The filtered water from the RO unit is stored in the
permeate tank and the reject in the UF backwash tank. Stage P6
controls the cleaning of the membranes in the UF unit by turning
on or off the UF backwash pump.

Figure 8: Overview of WADI testbed [6]. Solid arrows indi-
cate flow of water and sequence of processes. S and A repre-
sent, respectively, sets of sensors and actuators.

Table 6: Validating SWaT system model obtained from first
principles.

Sensor (Output Channel) VAF value
Ultrasonic Level Sensor (Tank-1) 100.0%
Ultrasonic Level Sensor (Tank-2) 100.0%

E WATER DISTRIBUTION TESTBED
It is an operational testbed supplying 10 US gallons/min of filtered
water. It represents a scaled-down version of a large water distribu-
tion network in a city. It contains three distinct control processes
labeled P1 through P3, each controlled by its own set of PLCs as
shown in Figure 8. An interested reader might look at [6] to under-
stand the functionality of the testbed. Following is a brief overview
of the WADI.
Stages in WADI: Water distribution process is segmented into the
following sub-processes: P1: Primary grid, P2: Secondary grid, P3:
Return water grid.
Primary grid: The primary grid contains two raw water tanks of
2500 liters each, and a level sensor (1-LIT-001) to monitor the water
level in the tanks. Water intake into these two tanks can be from the
water treatment plant, from Public Utility Board inlet, or from the
return water grid. A chemical dosing system is installed to maintain
adequate water quality. Sensors are installed to measure the water
quality parameters of the water flowing into and out of the primary
grid.
Secondary grid: This grid has two elevated reservoir tanks and six
consumer tanks. Raw water tanks supply water to the elevated
reservoir tanks and, in turn, these tanks supply water to the con-
sumer tanks based on a pre-set demand pattern. Once consumer
tanks meet their demands, water drains to the return water grid.
Return water grid is equipped with a tank.

F SUPPORTING FIGURES
In the following, supporting figures auxiliary results are shown.
Figure 9 shows threshold validation for CUSUM and Bad-Data
detectors on SWaT testbed. Figure 10 shows detection using Bad-
Data detector. Figure 11 shows system model validation of SWaT.
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CUSUM CUSUM

(a) (b)

Figure 9: (a): False alarm rate of Bad-Data andCUSUMdetector at Tank-1. (b): False alarm rate of Bad-Data andCUSUMdetector
at Tank-2.

Real-time System States: Tank-1 Bad-Data Detector: Tank-1

Figure 10: Constant bias attack detection by Bad-Data detector. It can be observed that as attack starts at 11s, it’s detected.
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Figure 11: SWaT System Model Validation for Tank-1.
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