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ABSTRACT
In this manuscript, we present a detailed case study about
model-based attack detection procedures for Cyber-Physical
Systems (CPSs). In particular, using EPANET (a simu-
lation tool for water distribution systems), we simulate a
Water Distribution Network (WDN). Using this data and
sub-space identification techniques, an input-output Linear
Time Invariant (LTI) model for the network is obtained.
This model is used to derive a Kalman filter to estimate the
evolution of the system dynamics. Then, residual variables
are constructed by subtracting data coming from EPANET
and the estimates of the Kalman filter. We use these resid-
uals and the Bad-Data and the dynamic Cumulative Sum
(CUSUM) change detection procedures for attack detection.
Simulation results are presented - considering false data in-
jection and zero-alarm attacks on sensor readings, and at-
tacks on control input - to evaluate the performance of our
model-based attack detection schemes. Finally, we derive
upper bounds on the estimator-state deviation that zero-
alarm attacks can induce.

1. INTRODUCTION
Cyber Physical Systems (CPSs) are the combination of

computing resources and physical processes [14]. In the past,
process control systems were completely isolated in the sense
that they were not connected to the cyber space. However,
with the arrival of new networking technologies, physical
processes are being controlled and monitored through com-
munication networks. These advancements have greatly im-
proved the performance of our public infrastructures–e.g.,
transportation, smart grid, and water treatment facilities–
but have also led to increased vulnerabilities against fail-
ures and attacks at the communication networks, which may
serve as new access points for malicious agents trying to dis-
rupt the system. Attacks on such systems may result in any-
thing from performance degradation to physical damange,
depending on the knowledge, capabilities, resources, and
goals of the attacker.
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Water distribution networks are spread over hundreds of
miles. These distributed systems are controlled by Pro-
grammable Logic Controllers (PLCs) and monitored by sen-
sors and smart meters. To operate these networks, an oper-
ator supervises the system through a centralized computer
using a Supervisory Control and Data Acquisition (SCADA)
system [8]. PLCs gather data coming from the sensors and
use this information to compute control actions to be sent
to the actuators. This automation relies on the cyber in-
frastructure to exchange information between devices. The
addition of this cyber layer makes the water system vul-
nerable to different types of cyber-physical attacks. For in-
stance, in 2000, Maroochy Shire (Australia) sewage system
was hacked by a disgruntled employee. This hacking led
to the spillage of around one million liters of waste water
into parks and water ways [25]. According to a report by
U.S. Industrial Control System Cyber Emergency Response
Team (ICS-CERT), several attacks have occurred against
water utilities in the USA [2]. The critical nature of water
infrastructures makes them an attractive target for hackers
and terrorist activities. Therefore, it is extremely important
to ensure security of these systems.

The work in [5, 6] focuses on a water canal network. The
authors characterize the effect of adversarial attacks on sen-
sor readings. They conducted field tests to support their
proposed approach. However, such methods cannot be di-
rectly applied to water distribution networks, because at-
tackers have more access points to disrupt the system, due
to complexity of the system. The work in [23] studies vul-
nerabilities in water distribution networks. They propose a
game-theoretic approach to detect and minimize loss due to
attacks.

In this manuscript, we propose a control-theoretic model-
based approach for detection of sensor and actuator attacks
of WDNs. We obtain a dynamical model of the system from
sensor data and use statistical change detection techniques
for attack detection. Most of the related work focuses on
static detection procedures–e.g., chi-squared and bad-data
detectors [18, 4, 13, 16]. These procedures detect attacks
based on a single measurement at a time. However, in con-
text of CPSs security, only a few papers have considered the
use of dynamic detectors like the Cumulative Sum (CUSUM)
procedure, which employs sensor measurement history [9,
10, 19]. Here, for both the Bad-Data and the CUSUM pro-
cedures, we study how features of the system (e.g., system
matrices, estimator gains, and noise) relate to the perfor-
mance of the attack detector (e.g., state estimate deviation
and false alarm rate).
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Figure 1: Case Study: Water Distribution Network

We provide a comprehensive study of a real world WDN
designed and emulated in EPANET. We run EPANET for
different demand patterns and collect the corresponding out-
put data (simulated sensor measurements) e.g., water level
in the water storage tank and flow/pressure at the junc-
tions/nodes. This data is used to derive a state space Linear
Time Invariant (LTI) model for the WDN using subspace
identification techniques [21]. This model is employed to
construct a Kalman filter to estimate the evolution of the
system dynamics. Next, we construct residual variables by
subtracting data coming from EPANET and the estimates of
the Kalman filter. We use these residuals and the Bad-Data
and the dynamic Cumulative Sum (CUSUM) change detec-
tion procedures for attack detection. Limitations of these
statistical detectors are analyzed under a class of zero-alarm
attacks. Simulation results compare the performance of the
attack detectors under different attack scenarios.

The rest of the paper is organized as follows. In Section
2, the system description and the attack detection scheme
are presented. In particular, the proposed water distribution
network, the Kalman filter (and the residuals generation),
and the CUSUM and Bad-Data procedures are introduced.
In Section 3, the attacker model and the implemented at-
tacks are presented. Performance limitations of the attack
detectors and state estimate deviations under attacks are
analyzed in Section 4. Section 5 discusses the simulation
results that compare the theoretical analysis with experi-
mental observations.

2. SYSTEM DESCRIPTION AND ATTACK
DETECTION

In this section, we introduce the topology of the water dis-
tribution network considered here. A linear time invariant
system model is obtained using subspace identification tech-
niques. Then, we construct a Kalman filter which is used
to construct attack detection schemes. A block diagram for
the proposed method is shown in Figure 2.

2.1 Water Distribution Network
The proposed water distribution network is modeled in

EPANET [1]. EPANET is a software tool used to model
and simulate water systems. The schematic of the network
is depicted in Figure 1. It consists of a water reservoir, a
storage tank, a pump, and seven nodes/junctions. Nodes 4,

Figure 2: Block diagram of the estimation-based
control and attack-detection.

5, 6, and 7 represent four consumers. The consumer nodes
have time-varying demand patterns based on their water re-
quirements. The controller has the knowledge of the demand
patterns, the water level in the tank, and the pressures at
the junctions. This network is simulated in EPANET and
data is collected for all measurable outputs and the input
demands. These hydraulic simulations are carried out with
a simulation time period of 10 days (240 hours) and a time
step of 15 minutes (which we also use as sampling time for
generating the state space model). The junctions and water
level in the tank are used as outputs of the control system
and the demands of the user nodes and the pump status
are used as inputs to generate a state space model of the
system. Using data collected under regular operation (no
attacks) and subspace identification techniques [21], we ap-
proximate the input-output dynamical model of the WDN
by a set of Linear Time Invariant (LTI) stochastic difference
equations. In particular, we obtain a discrete time state
space model of the form:{

xk+1 = Axk +Buk + vk,

yk = Cxk + ηk.
(1)

where k ∈ N is the discrete time index, xk ∈ Rn is the state
of the approximated model, (its dimension depends on the
order of the approximated model), y ∈ Rm are the mea-
sured outputs, and u ∈ Rp denote the demand patterns.
The system identification problem is to determine the sys-
tem matrices A,B,C from input-output data. The obtained
model provides a 70% fit between measurements and sim-
ulated outputs (generated using the approximated model)
with 10 states, i.e., n = 10 (the matrices are shown in ap-
pendix). We also identified a few higher and lower order
models. Ultimately, the model with 10 states has a nice
trade-off between prediction error and the dimension of the
model. The quality of the identified model is validated by
looking at the system evolution based on the identified state
space matrices and initial state x1. The closeness of the
system evolution to the sensor measurements obtained from
EPANET indicates that this model is a faithful representa-
tion of the water distribution network (see Figure 3). The
top pane shows the sensor readings from EPANET as well as
the modeled output for the water level sensor using system
matrices. We can observe that modeled output is very close
to sensor readings, resulting in small error(error is shown in
middle pane while it’s probability distribution is shown in
bottom pane).

At the time-instants k ∈ N, the output of the process yk
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Figure 3: Validating the system model obtained using subspace identification method.

is sampled and transmitted over a communication channel
(2). The received output ȳk is used to compute control ac-
tions uk which are sent back to the process. Throughout
this control-loop, there are many potential points where an
attacker can hack into the system. For instance, man-in-the-
middle attacks at the communication channels and physical
attacks directly on the infrastructure. In this manuscript,
we focus on sensor and actuator attacks, which could be ac-
complished through a man-in-the-middle scheme and/or a
replacement of onboard PLC software with malware. Af-
ter each transmission and reception, the attacked output ȳk
takes the form:

ȳk := yk + δk = Cxk + ηk + δk, (2)

where δk ∈ Rm denotes sensor attacks. Throughout this
manuscript, we reserve the variable k as the discrete-time
index of various sequences; where clear, we omit reminding
the reader that k ∈ N.

2.2 Attack Detection Framework
In this section, we explain the details of our attack de-

tection scheme. First, we discuss the Kalman filter based
state estimation and residual generation. Then, we present
our residual-based attack detection procedures (namely the
CUSUM and Bad-Data detectors).

2.2.1 Kalman Filter
To estimate the state of the system based on the available

output yk, we use a linear filter with the following structure:

x̂k+1 = Ax̂k +Buk + Lk

(
ȳk − Cx̂k

)
, (3)

with estimated state x̂k ∈ Rn, x̂1 = E[x(t1)], where E[ · ]
denotes expectation, and gain matrix Lk ∈ Rn×m. Define
the estimation error ek := xk − x̂k. In the Kalman filter,
the matrix Lk is designed to minimize the covariance matrix
Pk := E[eke

T
k ] (in the absence of attacks). Given the system

model (1),(2) and the estimator (3), the estimation error is
governed by the following difference equation

ek+1 =
(
A− LkC

)
ek − Lkηk − Lkδk + vk. (4)

If the pair (A,C) is detectable, the covariance matrix con-
verges to steady state in the sense that limk→∞ Pk = P
exists [7]. We assume that the system has reached steady
state before an attack occurs. Then, the estimation of the
random sequence xk, k ∈ N can be obtained by the estimator
(3) with Pk and Lk in steady state. It can be verified that,
if R2 + CPCT is positive definite, the following estimator
gain

Lk = L :=
(
APCT )(R2 + CPCT )−1

, (5)

leads to the minimal steady state covariance matrix P , with
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(a) Normal operation (no attack).
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(b) System under attack (bias injection attack).

Figure 4: (a): Probability distribution of the residual for water level sensor measurements without attack.
(b): Probability distribution of the residual for water level sensor measurements with bias injection attack.

P given by the solution of the algebraic Riccati equation:

APAT − P +R1 = APCT (R2 + CPCT )−1CPAT . (6)

The reconstruction method given by (3)-(6) is referred to as
the steady state Kalman Filter, cf. [7].

2.2.2 Residuals and Hypothesis Testing
Although the notion of residuals and model-based detec-

tors is now routine in the fault detection literature, the pri-
mary focus has been on detecting and isolating faults that
occur with a specific structure (e.g., bias drifts). Now, in the
context of an intelligent adversarial attacker, new challenges
arise to understand the worst case effect that an intruder can
have on the system. While fault detection techniques can be
used to detect attacks; it is important to assess the perfor-
mance of such methods against an intelligent adversary. In
this work, by means of our simulation study, we assess the
performance of two model-based fault detection procedures
(the chi-squared and the CUSUM procedures) for a variety
of attacks. These procedures rely on a state estimator (e.g.,
Kalman filter) to predict the evolution of the system. The
estimated values are compared with sensor measurements
ȳk (which may have been attacked). The difference between
the two should stay within a certain threshold under normal
operation, otherwise an alarm is triggered to point a poten-
tial attack. Define the residual random sequence rk, k ∈ N
as

rk := ȳk − Cx̂k = Cek + ηk + δk. (7)

If there are no attacks, the mean of the residual is

E[rk+1] = CE[ek+1] + E[ηk+1] = 0m×1. (8)

where 0m×1 denotes an m×1 matrix composed of only zeros,
and the covariance is given by

Σ := E[rk+1r
T
k+1] = CPCT +R2. (9)

For this residual, we identify two hypothesis to be tested, H0

the normal mode (no attacks) and H1 the faulty mode (with
attacks). For our particular case of study, the pressure at

the nodes and the water level in the tank are the outputs of
the system. Using this data along with the state estimates,
we construct our residuals. Then, we have:

H0 :

{
E[rk] = 0m×1,

E[rkr
T
k ] = Σ,

or H1 :

{
E[rk] 6= 0m×1,

E[rkr
T
k ] 6= Σ.

Figure 4 shows the approximated distributions of the resid-
uals of the water level in the storage tank for both the at-
tacked and the attack-free cases. In Figure 4(b), the residual
under a bias injection attack (simple constant offset on the
sensor measurements) is depicted. Our hypothesis can eas-
ily be verified by looking at the probability distribution of
residuals. Our null hypothesis H0 which follows a zero mean
normal distribution with variance Σ is also verified from plot
in Figure 4(a). Similarly, for the attacked scenario H1, we
do not have a zero mean normally distributed residual as
it is shown in Figure 4(b). We can formulate the hypoth-
esis testing in a more formal manner using existing change
detection techniques based on the statistics of the residuals.

2.2.3 Cumulative Sum (CUSUM) Detector
The CUSUM procedure is driven by the residual sequences.

In particular, the input to the CUSUM procedure is a dis-
tance measure, i.e., a measure of how deviated the estimator
is from the actual system, and this measure is a function of
the residuals. In this work, we assume there is a dedicated
detector on each sensor (or on any sensor we want to include
in the detection scheme). Throughout the rest of this paper
we will reserve the index i to denote the sensor/detector,
i ∈ I := {1, 2, . . . ,m}. Thus, we can partition the attacked
output vector as ȳk = col(ȳk,1, . . . , ȳk,m) where ȳk,i ∈ R
denotes the i-th entry of ȳk ∈ Rm; then

ȳk,i = Cixk + ηk,i + δk,i, (10)

with Ci being the i-th row of C and ηk,i and δk,i denoting
the i-th entries of ηk and δk, respectively. Inspired by the
empirical work in [9], we propose the absolute value of the
entries of the residual sequence as distance measure, i.e.,

zk,i := |rk,i| = |Ciek + ηk,i + δk,i|. (11)
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Note that, if there are no attacks, rk,i ∼ N (0, σ2
i ) (see Figure

4(a)), where σ2
i denotes the i-th entry of the diagonal of

the covariance matrix Σ. Hence, δk = 0 implies that |rk,i|
follows a half-normal distribution [24] with

E
[
|rk,i|

]
=

√
2√
π
σi and var

[
|rk,i|

]
= σ2

i

(
1− 2

π

)
. (12)

Next, having presented the notion of distance measure, we
introduce the CUSUM procedure. For a given distance mea-
sure zk,i ∈ R, the CUSUM of Page [22] is written as follows.

CUSUM: S0,i = 0, i ∈ I,{
Sk,i = max(0, Sk−1,i + zk,i − bi), if Sk−1,i ≤ τi,
Sk,i = 0 and k̃i = k − 1, if Sk−1,i > τi.

(13)

Design parameters: bias bi > 0 and threshold τi > 0.
Output: alarm time(s) k̃i.

From (13), it can be seen that Sk,i accumulates the distance
measure zk,i over time. When this accumulation becomes
greater than a certain threshold τi an alarm is raised. The
sequence Sk,i is reset to zero each time it becomes negative
or larger than τi. If zk,i is an independent non-negative se-
quence (which is our case) and bi is not sufficiently large, the
CUSUM sequence Sk,i grows unbounded until the threshold
τi is reached, no matter how large τi is set. In order to pre-
vent these drifts, the bias bi must be selected properly based
on the statistical properties of the distance measure. Once
the the bias is chosen, the threshold τi must be selected to
fulfill a required false alarm rate A∗i . The occurrence of an
alarm in the CUSUM when there are no attacks to the CPS
is referred to as a false alarm, and Ai ∈ [0, 1] denotes the
false alarm rate for the CUSUM procedure defined as the
expected proportion of observations which are false alarms
[3, 27].

2.2.4 Bad-Data Detector
We have also implemented the Bad-Data detector for this

case of study because it is widely used in the CPS security
literature [11, 17]. We also present a performance compari-
son between the CUSUM and the Bad-Data detectors. For
the residual sequence rk,i given by (7), the Bad-Data detec-
tor is defined as follows.

Bad-Data Procedure:

If |rk,i| > αi, k̃i = k, i ∈ I. (14)

Design parameter: threshold αi > 0.

Output: alarm time(s) k̃i.

Using the Bad-Data detector an alarm is triggered if dis-
tance measure |rk,i| exceeds the threshold αi. Similar to the
CUSUM procedure, the parameter αi is selected to satisfy
a required false alarm rate A∗i .

3. ATTACKER AND ATTACK MODELS
In this section, we introduce the types of attacks launched

on our water distribution network. Essentially, the attacker
model encompasses the attacker’s intentions and it’s capa-
bilities. The attacker may choose its goals from a set of

ttack at

nput

Figure 5: CPS under attack.

intentions [26], including performance degradation, disturb-
ing a physical property of the system, or damaging a com-
ponent. In our experiments, three classes of attacks are
modeled and executed. It is assumed that the attacker has
access to yk,i = Ciyk + ηk,i (i.e., the opponent has access to
sensor measurements). Also, the attacker knows the system
dynamics, the state space matrices, the control inputs and
outputs, and the implemented detection procedure. The ad-
versary has perfect knowledge of the Kalman filter and can
modify the sensor readings to an arbitrary value.

1. Bias Injection Attack : First, a failure-like attack is
designed. The attacker’s goal is to deceive the con-
trol system by sending incorrect sensor measurements.
In this scenario, the level sensor measurements are in-
creased while the actual tank level is invariant. This
makes the controller think that the attacked values
are true sensor readings; and hence, the water pump
keeps working until the tank is empty and the pump
is burned out. The attack vector can be defined as,

ȳk = yk + ηk + δ̄, (15)

where δ̄ is the bias injected by the attacker.

2. Zero-Alarm Attack : The second attack is more sophis-
ticated and is carried out by carefully generating δk
to drive the system to an undesired state. The objec-
tive of this attack is to maximize the damage without
raising alarms. This attack is designed to deceive the
detection schemes explained in Section 2.2.3 and Sec-
tion 2.2.4. A detailed analysis on how to design such
an attack is presented in Section 4.2.1. This attack
does not cause alarms because the injected value and
the previous steady state measurement differ only in
a small amount, then the residual value would not be
sufficiently large to raise an alarm. By knowing the pa-
rameters of the detection procedure, it is always pos-
sible to modify the sensor values by an amount such
that the residuals never cross the detection thresholds.

3. Attack on Control Inputs: In the third type of attack,
the attacker changes the inputs to the actuators. In
our case of study, the user demand patterns are the
control inputs. By changing the user demands, the at-
tacker makes the controller think the demand has been
modified, ultimately leading to over/under pumping
of water. An schematic example of such an attack is
shown in Figure 5. This attack is executed on the
EPANET simulator and the details of the attack are
not available to us. This is intentionally done to test
our detection methods against completely unknown at-
tacks. Although we do not explicitly model these in-
put attacks, we observe that they lead to changes in
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the residuals such that our residual-based detection
methodology can be used as well.

4. PERFORMANCE LIMITATIONS OF
ATTACK DETECTORS

As specified in the previous section, it is important to
carefully select the parameters of the detectors. For the
bad-data detector, we only have to take care of threshold αi

but for CUSUM, we have two parameters, the bias bi and
the threshold τi. For selecting the thresholds, it is intuitive
to select them not too small or too large. Small thresholds
result in increased false alarms while large ones may result
in undetected attacks. For the CUSUM, too small values of
bias bi leads to unbounded growth of the CUSUM sequence
while too large bi hides the effect of the attacker. In [19,
20], the authors present tools for selecting bi and τi based
on the statistical properties of the distance measure zk,i. In
what follows, we briefly introduce these tools.

4.1 Boundedness and False Alarm Rate
Consider the closed-loop system (1),(3)-(6). Assume that

sensors yk,i are monitored for attack detection. First, for
i ∈ {1, ...,m}, let δk,i = 0 and consider the CUSUM pro-
cedure (13) with distance measure zk,i = |rk,i| and residual
sequence (7). According to Theorem 1 in [19], the bias bi
must be selected larger than b̄i = σi

√
2/π to ensure mean

square boundedness of Sk,i independent of the threshold τi.
The standard deviation σi is given by the square root of the
i-th entry of the residual covariance matrix Σ given in (9).
In our analysis we set bi = 2b̄i. Next, for the desired false
alarm rate A∗i = 0.01(1%), we compute the corresponding
thresholds τi = τ∗i , using Theorem 2 and Remark 2 in [19].

For the bad-data detector, we can also find the thresholds
αi using the tools [19]. That is, if

αi = α∗i :=
√

2σierf−1(1−A∗i ), (16)

where erf(·) denotes the error function [15]. Then, Ai =
A∗i for attack-free systems with rk,i ∼ N (0, σ2

i ), where Ai

denotes the actual false alarm rate and A∗i is the desired
false alarm rate.

4.2 State Estimation Under Attacks
In this section, we assess the performance of the bad-data

and the CUSUM procedures by quantifying the effect of the
attack sequence δk on process dynamics when they are used
to detect anomalies. In particular, we characterize for a class
of zero-alarm attacks, the largest deviation on the estimation
error due to the attack sequence. We derive upper bounds
on the expectation of the estimation error given the sys-
tem dynamics, the Kalman filter, the attack sequence, and
the parameters of the detection procedure. For the same
class of attacks, we quantify the largest deviation of the ex-
pectation for the estimation error when using the bad-data
procedure and then compare it with the one obtained with
the CUSUM.

4.2.1 Impact of Zero-Alarm Attacks
In this section we will evaluate the impact of a class of

zero-alarm attacks on system state estimation. This can be
termed as worst case analysis as the attacker is able to do
damage and still not get detected. As stated in section 3,
the attacker has complete knowledge of system dynamics

and detection algorithms. Based on this information an at-
tacker generates an attack sequence δk, such that detection
algorithms would not generate an alarm. Although this at-
tack goes undetected it can induce changes in the system
dynamics and here we analyze such a disturbance in this
section. First, consider the bad-data procedure and write
the left-hand side of (14) in terms of the estimation error
ek:

|rk,i| = |Ciek + ηk,i + δk,i|, i ∈ I. (17)

By assumption, the attacker has access to yk,i = Ciyk +ηk,i.
Moreover, given its perfect knowledge of the Kalman filter,
the opponent can compute the estimated output Cix̂k and
then construct Ciek + ηk,i. It follows that

δk,i = −Ciek − ηk,i + αi → |rk,i| = αi, i ∈ I, (18)

is a feasible attack sequence given the capabilities of the at-
tacker. These attacks maximize the damage to the CPS by
immediately saturating and maintaining |rk,i| at the thresh-
old αi. Define α := col(α1, . . . , αm). Then, the expectation
of the estimation error under the attack (18) is given by

E[ek+1] = AE[ek]− Lα. (19)

If ρ[A] > 1, then ||E[ek]|| diverges to infinity as k → ∞
[7]. That is, the attack sequence (18) destabilizes the sys-
tem if ρ[A] > 1. If ρ[A] ≤ 1, then |E[ek]|, may or may
not diverge to infinity depending on algebraic and geomet-
ric multiplicities of the eigenvalues with unit modulus of A
(a known fact from stability of LTI systems [7]).

Proposition 1. Consider the process (1), the Kalman filter
(3)-(6), and the Bad-Data procedure (14). Let the sensors be
attacked by the bad-data zero-alarm attack sequence (18).
Then, if ρ[A] < 1, it is satisfied that limk→∞ ||E[ek]|| = γBD,
where γBD := ||(I −A)−1Lα||.

Proof : By assumption ρ[A] < 1. This implies that (I−A) is
invertible; hence, system (19) has a unique equilibrium given
by E[ek] = ē := (A− I)−1Lα. From (19), it is easy to verify
that E[ek]− ē satisfies the following difference equation

E[ek+1]− ē = A(E[ek]− ē).

Therefore, ρ[A] < 1 imply that the equilibrium ē is expo-
nentially stable [7], i.e., limk→∞E[ek] = ē. The Euclidean
norm on Rn is a continuous function from Rn to R≥0 [12]. It
follows that limk→∞ ||E[ek]|| = || limk→∞E[ek]|| = ||ē|| and
the assertion follows. �

Next, consider the CUSUM procedure and write (13) in
terms of the estimation error ek:

Sk,i = max(0, Sk−1,i + |Ciek + ηk,i + δk,i| − bi), (20)

if Sk−1,i ≤ τi; and Sk,i = 0, if Sk−1,i > τi. As with the bad-
data, we look for attack sequences that immediately saturate
and then maintain the CUSUM statistic at the threshold
Sk,i = τi. Assume that the attack starts at some k = k∗ ≥ 2
and Sk∗−1,i ≤ τi, i.e., the attack does not start immediately
after a false alarm. Consider the attack:

δk,i =

{
τi + bi − Ciek − ηk,i − Sk−1,i, k = k∗,
bi − Ciek − ηk,i, k > k∗.

(21)

Launching a zero-alarm attack to deceive a CUSUM detector
is not as simple as doing the same for the bad-data detec-
tor. Since CUSUM test depends on accumulated sum over
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Figure 6: Bad-data detection method under a zero-alarm attack for scenario 1.

the time, to launch an attack as in (21), an attacker needs
to know Sk∗−1,i, i.e., the value of the CUSUM sequence one
step before the attack. This is a strong assumption since
it represents a real-time quantity that is not communicated
over the communication network. Even if the opponent has
access to the parameters of the CUSUM, (bi, τi), given the
stochastic nature of the residuals, the attacker would need
to know the complete history of observations (from when
the CUSUM was started) to be able to reconstruct Sk∗−1,i

from data. This is an inherent security advantage in fa-
vor of the CUSUM over static detectors like the bad-data
or chi-squared. Nevertheless, for evaluating the worst case
scenario, we assume that the attacker has access to Sk∗−1,i.
Define b := col(b1, . . . , bm), τ := col(τ1, . . . , τm), and, with-
out loss of generality, assume k∗ = 2. Then, by construc-
tion, E[xi] = E[ei] = 0, i = 1, 2, and the expectation of the
closed-loop system under the attack sequence (21) is written

as: E[x3] = 0, E[e3] = −Lτ , and, for k > k∗ = 2,

E[ek+1] = AE[ek]− Lb. (22)

Proposition 2. Consider the process (1), the Kalman filter
(3)-(6), and the CUSUM procedure (13). Let the sensors be
attacked by the CUSUM zero-alarm attack sequence (21).
Then, if ρ[A] < 1, it is satisfied that limk→∞ |E[ek]| = γCS,
where γCS := ||(I −A)−1Lb||.

The proof Proposition 2 follows the same lines as the proof
of Proposition 1 and it is omitted here.

5. RESULTS AND DISCUSSION
In this section, we present the obtained simulation result.

The CUSUM and the bad-data procedures are based on the
statistical properties of the residuals. In Figure 4(b), we
show the probability distributions of the water level resid-
ual under bias attacks and without attacks. It is evident that
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Figure 7: CUSUM detection method under a zero-alarm attack for scenario 1.

the statistics of the residual may change under some types of
attacks (e.g., bias injection attacks). However, by construc-
tion, the zero-alarm attacks introduced in the last section
are not detected by the bad-data and CUSUM procedures.
We carry out simulations for two sets of data (labeled as sce-
nario 1 and scenario 2) generated by EPANET for the water
distribution network depicted in Figure 1. These scenarios
are described as follows.

• Scenario 1: In this case, we collect data from EPANET
under normal operating conditions (no attacks). Based
on this data, the matrices (A,B,C) of model (1) are
obtained using subspace identification techniques (pre-
sented in the appendix). In this scenario, the matrix
A satisfies ρ(A) < 1. To study the effect of attacks, we
manipulate the sensor measurement data coming from
EPANET. In particular, we add a constant bias to the
sensor measurements. We also induce the zero-alarm
attacks introduced in the previous section.

• Scenario 2: Here, data is collected from EPANET not
only under normal operating conditions but also under
control input attacks, i.e., we get a set of“healthy”data
and another under attacks. We use the healthy data

to generate new system matrices (A,B,C). In this
case, the obtained matrix A satisfies ρ(A) > 1, i.e.,
the system model is open-loop unstable. We remark
that this case considers input attacks. We have no
information about the starting time and the structure
of these control input attacks. It makes this scenario
interesting for testing the effectiveness of our detection
schemes.

Figure 6 shows the evolution of the residuals under the
zero-alarm attack for scenario 1. The top plot depicts the
residual for the level sensor reading of the storage tank
when the system is running under normal conditions. Each
value of k represents sampling time from the simulations in
EPANET (sampling interval in this case study is 15 min-
utes). The zero-alarm attack for the bad-data detector is
designed as in (18). The attack is launched at k = 150, so
that the first 150 data samples are attack free. This helps
us to understand the evolution of the residuals before and
during the attack. After the attack is launched, the resid-
ual approaches the threshold αk,i (as seen in Figure 6); and
stays there for the rest of the simulation (because attack is
not removed). This zero-alarm attack leads to deviations in
the state estimates and sensor measurements (as shown in
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Alarm Rate
Output 1

Alarm Rate
Output 2

Alarm Rate
Output 3

Alarm Rate
Output 4

Alarm Rate
Output 5

Bad-Data: no attack 0.0194 0.0153 0.0125 0.0139 0.0125
Bad-Data: bias attack 0.7947 0.7920 0.7933 0.7933 0.7947

CUSUM: no attack 0.0208 0.0180 0.0153 0.0166 0.0153
CUSUM: bias attack 0.7947 0.7947 0.7947 0.7933 0.7947

Bad-Data: zero-alarm attack 0.0042 0.0042 0.0014 0.0014 0.0014
CUSUM: zero-alarm attack 0.0083 0.0055 0.0069 0.0055 0.0069

Table 1: Alarm Rates for given conditions for Scenario 1.

Alarm Rate
Output 1

Alarm Rate
Output 2

Alarm Rate
Output 3

Alarm Rate
Output 4

Alarm Rate
Output 5

Bad-Data: no attack 0.0447 0.0385 0.0520 0.0510 0.0229
Bad-Data: attack at input 0.1686 0.1374 0.1613 0.1301 0.1811

CUSUM: no attack 0.0527 0.0430 0.0527 0.0583 0.0222
CUSUM: attack at input 0.2094 0.1650 0.2025 0.1442 0.1650

Bad-Data: zero-alarm attack 0.0021 0.0031 0.0052 0.0031 0
CUSUM: zero-alarm attack 0.0042 0.0111 0.0111 0.0014 0.0139

Table 2: Alarm Rates for given conditions for Scenario 2.
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Figure 8: Degradation of ŷ(k) due to a zero-alarm
attack for scenario 1.

Figure 6). Figure 7 depicts similar results for the CUSUM
procedure under the corresponding zero-alarm attack. Here,
we note that the residual under the zero-alarm attack con-
verges to bi after the attack starts. For both procedures, un-
der zero-alarm attacks, note that (Figures 6 and 7) the state
estimate converges to steady state, i.e., it remains bounded.
This is expected in scenario 1 because ρ(A) < 1; and hence,
by Proposition 1 and Proposition 2, the estimation error is
bounded which implies boundedness of the state estimate
because the state of the model is bounded itself. Figure 8
compares the output estimate degradation between the bad-
data and CUSUM procedures under zero-alarm attacks. It
is evident from this figure that the CUSUM performs better
than bad-data procedure in terms of estimation deviation–
which is also in accordance with our analytic results in sec-
tion 4.2.1.

Figure 9: Degradation of ŷ(k) due to a zero-alarm
attack for scenario 2.

Figure 10 shows the performance of the bad-data proce-
dure under zero-alarm attacks for scenario 2. In this case,
we have similar results as in scenario 1. However, we note
that the output estimate diverges under zero-alarm attacks.
This is because the matrix A satisfies ρ(A) > 1 which implies
that ||E[ek]|| diverges. Similar results are obtained for the
CUSUM (see Figure 11). Figure 9 compares the output es-
timate degradation between the bad-data and CUSUM pro-
cedures under zero-alarm attacks. Note that although both
estimates diverge, the CUSUM leads to slower divergence
rate than the bad-data procedure.

In Tables 1 and 2, the alarm rates for scenario 1 and sce-
nario 2 are presented respectively. In both tables, each col-
umn shows the rate of alarms produced by sensor measure-
ment for both detectors. Outputs 1-4, represent the pres-
sure sensors at the four consumer nodes (Node 4-7). Out-
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Figure 10: Bad-data detection method under a zero-alarm attack for scenario 2.

put 5 is the level sensor in the storage tank. Each row label
in Table 1, presents a key1:key2 pair where key1 is detec-
tion method and key2 is attack scenario, e.g., bad-data:bias
attack, presents results for bad-data detector under a bias
attack. In scenario 1 (Table 1), the attack is referred to ad-
dition of a bias value in the output measurement from the
level sensor. This attack starts at time slot k = 150. In
the no attack scenario we see the performance of the bad-
data and CUSUM detectors as expected, i.e., alarm rate (for
attack) is equal to the false alarm rate of 1%. In the bias at-
tack case of scenario 1, the alarm rate goes up to 79% which
implies that this attack is easily detected based on detector
alarms. Considering that the first 20% of the measurements
correspond to normal operation (for visualizing the effects
of the attack), the rest of the attacked readings result in
an alarm showing that such a bias attack is easily found by
these detection schemes. For the zero-alarm attack, results
show very small alarm rate as these attacks are designed not
to raise alarms. For zero-alarm attacks, if we start attack
from beginning of the measurements, we get 0% alarm rate.
For scenario 2 (Table 2), we observe that when the system
is under attack the alarm rate is higher than compared to

normal operation. Since, the attack in this case is on con-
trol inputs and we do not know when the attack starts and
finishes. Thresholds are calculated for 1% false alarm rate
but for attacks on input, the alarm rate reached 20%, which
is much higher than the normal false alarm rate. So, we can
point out that the system is under attack. This also points
to the fact that if the system is being attacked at inputs,
such attacks can be detected by using output measurements
of the system. The zero-alarm attacks are created for sensor
attacks, not actuator attacks, so it is not surprising that we
are able to detect when attacks are initiated on the inputs.

6. CONCLUSION
In this manuscript, for the model of a water distribution

network, we have explained step by step how to construct
model-based attack detectors for identifying compromised
sensors and actuators. In particular, a Kalman filter has
been proposed to estimate the state of the physical process;
then, these estimates have been used to construct residual
variables (difference between sensor measurements and esti-
mations) which drive the CUSUM procedure. For a class of
zero-alarm attacks, we have characterized the performance
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Figure 11: CUSUM detection method under a zero-alarm attack for scenario 2.

of the proposed detection procedures in terms of the effect
that the attack sequence can induce on the system dynam-
ics, namely in the output estimate. Then, we have compared
performance of CUSUM and Bad-Data method against each
other. We have shown how bias attacks (and most proba-
bly any output-injection attack as well) are easily detected
using fault-detection techniques as long as the statistics of
the residuals (in the attack-free case) are well characterized.
Moreover, input-injection attacks are also detected easily
using the proposed methods. Numerical simulations show
the effectiveness of the proposed methods against different
classes of attacks.
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APPENDIX
A. STATE SPACE MATRICES FOR

SCENARIO-2 AND SCENARIO-1
In what follows, we present the state space matrices

(A,B,C), obtained using sub-space system identification.
For scenario-2, more than 70% accuracy is achieved by a
10th order model and for scenario-1 by a 20th order model.
Therefore, we have system matrix A2 as a 10 x 10 and A1

as a 20 x 20. For a 6 inputs (4 user demands, flow at the
pumping station, ON/OFF status of the pumping station),
matrix dimensions for B2 are 10 x 6 and for B1 are 20 x
6. For 5 outputs, the dimensions for matrix C2 are, 5 x 10
and for C1 are, 5 x 20. Using these state space matrices
and system model of (1), one can find the dynamics of the
system evolution.
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A2 =



0.9774 −0.0190 −0.0747 0.0246 0.0154 −0.0717 −0.1313 −0.0721 0.0649 0.1173
−0.0054 0.9184 −0.3095 0.0309 −0.2480 −0.0283 −0.0595 −0.0388 0.0565 0.0813
−0.0196 −0.2107 −0.6614 −0.6767 −0.0330 0.0107 0.0137 0.0321 0.1525 0.0392
−0.0262 0.2753 0.0299 −0.0964 0.8360 −0.1407 −0.1406 −0.0304 0.1403 −0.0136
0.0095 0.1986 0.7830 −0.7442 −0.0968 −0.0499 0.0277 −0.0121 0.0126 0.0426
0.0716 −0.0264 0.1303 0.1686 0.0778 0.1560 −0.1839 −0.1363 0.1427 0.7906
0.1279 0.0876 0.0159 0.0632 0.0633 −0.2296 0.9815 0.0160 0.2045 −0.1912
0.0095 −0.0425 −0.0630 0.0937 0.0746 −0.2460 −0.0816 0.9258 −0.0314 0.3342
−0.1307 −0.2171 −0.0718 0.1451 −0.0927 −0.6864 −0.4954 −0.2661 0.8537 0.1556
−0.0174 −0.0135 −0.0614 0.0132 −0.0248 −0.3059 −0.3387 0.0797 0.5341 −0.8659



B2 =



0.007572 −0.05175 0.108 0.02162 −0.2539 160
0.01116 −0.039 0.07715 0.01197 −0.2052 129.1
0.2299 0.144 0.2696 0.2064 −0.2294 136.5
0.1663 0.1449 0.1711 0.1732 0.02358 −20.95
−0.06869 −0.09574 −0.08144 −0.0957 −0.1105 72.67
0.03138 −0.4238 0.8555 0.1249 −2.411 1538
−0.01166 0.04002 −0.08159 −0.01465 0.2355 −145.4
0.02767 −0.1526 0.3593 0.06446 −0.99 630
0.07585 −0.1316 0.5653 0.1126 −1.748 1129
−0.0259 0.6811 −1.134 −0.1565 3.043 −1904



C2 =


114.6361 −161.3788 31.0325 −30.3654 13.6921 −3.1363 17.3276 −11.2433 4.0045 −3.4214
114.5909 −161.3954 31.0365 −30.3679 13.6918 −3.1178 17.2831 −11.2558 4.0017 −3.4165
164.6299 −232.2755 44.4661 −43.7358 20.5170 −6.4195 22.5551 −2.8888 3.3832 −3.3145
144.6166 −203.9462 39.0985 −38.3926 17.7888 −5.0984 20.4400 −6.2367 3.6315 −3.3543
14.3219 −19.5879 4.1716 −3.6204 0.0279 3.5410 6.5744 −28.0264 5.2328 −3.5966



A1 =



0.19 0.09 −0.01 −0.08 −0.05 −0.01 −0.18 0.13 0.27 −0.20 0.29 −0.27 0.08 0.12 −0.30 −0.04 0.22 −0.21 0.43 −0.03
−0.04 0.84 0.01 −0.13 −0.37 −0.14 −0.10 −0.08 0.04 −0.36 0.07 0.42 0.10 0.81 −0.34 −0.36 −0.92 0.31 0.30 −0.71
−0.01 −0.15 0.95 −0.04 −0.08 −0.00 0.21 −0.01 0.01 −0.02 −0.15 0.12 −0.17 0.41 −0.01 0.08 −0.10 −0.11 −0.04 0.13
−0.57 0.27 −0.03 0.67 −0.00 0.11 −0.07 −0.47 −0.37 0.57 −0.07 0.19 −0.04 −0.36 0.10 0.18 0.84 0.48 −0.51 0.16
0.08 −0.01 0.08 −0.19 −0.01 −0.17 0.26 −0.05 −0.06 −0.31 −0.12 0.07 0.08 0.69 0.03 −0.07 −0.93 −0.44 0.03 −0.38
0.30 0.40 0.03 0.00 0.11 0.96 −0.43 0.19 −0.27 0.08 0.40 0.01 0.33 −0.84 −0.15 −0.64 0.19 0.83 −0.03 −0.77
0.14 0.14 −0.00 −0.03 −0.25 −0.00 0.91 −0.27 −0.06 −0.28 0.04 −0.02 −0.06 0.10 −0.14 −0.32 −0.28 0.03 0.19 −0.07
0.13 −0.04 0.01 0.09 0.01 −0.07 0.30 0.82 −0.18 −0.09 0.11 0.09 0.06 0.01 0.12 −0.00 −0.00 0.10 −0.11 −0.12
0.11 0.23 −0.00 −0.02 −0.28 0.07 0.08 0.24 0.49 −0.27 −0.16 −0.20 0.05 −0.45 −0.05 −0.26 −0.16 0.13 0.06 0.14
0.20 0.47 0.12 −0.11 −0.53 −0.24 0.11 0.25 0.73 0.39 0.17 −0.05 0.09 0.12 0.07 −0.12 −0.17 −0.04 0.13 0.19
−0.37 −0.12 0.04 −0.15 0.24 −0.09 −0.18 −0.31 0.68 −0.02 0.79 0.68 0.05 0.39 −0.06 0.52 0.24 −0.20 0.18 0.15
0.10 −0.10 −0.02 0.07 0.34 0.03 −0.10 −0.19 −0.16 0.14 −0.31 0.61 0.53 0.19 0.07 0.27 0.42 0.01 0.08 0.00
−0.24 −0.20 −0.06 0.03 0.13 0.07 0.04 −0.10 −0.08 0.01 −0.14 −0.35 0.40 0.23 −0.21 0.65 0.15 0.12 −0.01 0.23
−0.19 0.03 −0.01 0.02 0.01 0.04 −0.04 −0.01 0.19 −0.04 0.09 −0.06 −0.38 0.59 0.42 0.21 0.14 0.07 0.20 −0.12
0.19 −0.06 0.11 0.15 0.03 −0.01 0.11 −0.09 0.18 −0.05 0.16 −0.02 −0.05 −0.40 −0.03 0.63 −0.29 −0.03 0.01 0.02
−0.38 −0.06 −0.05 0.00 0.15 0.08 0.01 0.13 −0.04 0.23 −0.03 0.27 −0.18 −0.04 −0.52 −0.00 0.06 −0.07 0.28 −0.36
0.18 −0.08 −0.08 0.11 0.36 0.18 −0.23 −0.10 0.16 0.01 0.29 −0.25 0.14 −0.01 −0.31 −0.17 0.36 0.46 −0.13 0.33
0.00 −0.21 −0.02 0.18 0.17 0.12 0.00 −0.03 −0.07 0.13 −0.08 −0.01 −0.05 −0.15 0.19 −0.08 −0.18 0.05 0.56 0.55
−0.16 −0.06 −0.02 0.11 −0.03 0.07 −0.10 −0.01 0.11 0.05 0.10 −0.03 0.14 0.01 −0.04 −0.14 0.10 −0.64 −0.27 0.52
0.29 −0.27 0.04 0.09 −0.03 −0.15 −0.04 −0.07 0.14 −0.03 −0.01 −0.04 −0.08 0.14 −0.08 0.11 0.07 −0.35 −0.08 −0.34



B1 =



−0.0049 −0.0026 −0.0070 0.0009 0.0268 −19.9005
0.0047 −0.0040 −0.0008 0.0243 0.0923 −67.4258
0.0077 0.0094 0.0126 0.0110 −0.0043 3.3105
−0.0215 −0.0351 −0.0131 −0.0217 −0.0362 26.1488
0.0086 0.0105 0.0231 0.0300 0.0690 −50.4232
−0.0128 −0.0306 −0.0363 −0.0232 0.0032 −3.1391
0.0062 0.0021 −0.0015 0.0088 0.0052 −3.5669
0.0103 0.0052 −0.0043 0.0128 −0.0036 3.3107
0.0175 0.0111 −0.0058 0.0237 −0.0075 5.9806
−0.0122 0.0118 0.0038 −0.0060 0.0278 −20.7621
−0.0044 −0.0018 0.0019 −0.0079 −0.0002 −0.2009
−0.0094 −0.0212 −0.0079 −0.0123 −0.0060 3.4808
−0.0018 0.0109 0.0133 0.0045 −0.0113 8.8180
0.0081 0.0198 0.0154 0.0146 0.0157 −10.5528
0.0036 −0.0196 −0.0142 −0.0146 −0.0384 27.2594
−0.0089 −0.0274 −0.0225 −0.0240 0.0185 −14.5213
−0.0047 −0.0035 −0.0015 −0.0050 −0.0109 8.2116
0.0217 0.0182 0.0118 0.0072 −0.0132 9.5218
−0.0034 −0.0012 −0.0025 −0.0095 −0.0045 3.0176
0.0045 0.0073 0.0070 −0.0036 −0.0169 12.7814



C1 =

( 0.202 2.873 −2.1917 2.3322 −1.9137 −2.1566 −2.2838 0.330 1.272 2.0943 −1.4317 0.8167 −1.0703 0.574 0.001 −0.258 1.1656 1.6621 0.0410 1.8834
0.148 2.855 −2.1916 2.3308 −1.9153 −2.1490 −2.2641 0.315 1.278 2.0990 −1.4257 0.8023 −1.0441 0.5535 0.002 −0.251 1.1502 1.6658 0.0366 1.8753
−0.003 4.231 −2.0163 3.2396 −2.8943 −2.6020 −2.9784 0.143 1.614 3.0032 −2.1411 1.0252 −1.1644 0.6702 0.169 −0.467 1.1799 2.5161 0.1678 2.4226
0.069 3.679 −2.0885 2.8690 −2.5015 −2.4194 −2.6947 0.215 1.479 2.6415 −1.8544 0.9364 −1.1212 0.6277 0.101 −0.383 1.1741 2.1719 0.1169 2.2032
0.288 0.081 −2.5399 0.5308 0.0734 −1.2121 −0.7473 0.600 0.627 0.2954 0.0208 0.3193 −0.7330 0.2522 −0.332 0.220 1.0221 −0.0277 −0.2465 0.7559

)
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